Juhás P, Cherba D M, Duxbury P M, Punch W F, Billinge S J L
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA.
Nature. 2006 Mar 30;440(7084):655-8. doi: 10.1038/nature04556.
Advances in materials science and molecular biology followed rapidly from the ability to characterize atomic structure using single crystals. Structure determination is more difficult if single crystals are not available. Many complex inorganic materials that are of interest in nanotechnology have no periodic long-range order and so their structures cannot be solved using crystallographic methods. Here we demonstrate that ab initio structure solution of these nanostructured materials is feasible using diffraction data in combination with distance geometry methods. Precise, sub-ångström resolution distance data are experimentally available from the atomic pair distribution function (PDF). Current PDF analysis consists of structure refinement from reasonable initial structure guesses and it is not clear, a priori, that sufficient information exists in the PDF to obtain a unique structural solution. Here we present and validate two algorithms for structure reconstruction from precise unassigned interatomic distances for a range of clusters. We then apply the algorithms to find a unique, ab initio, structural solution for C60 from PDF data alone. This opens the door to sub-ångström resolution structure solution of nanomaterials, even when crystallographic methods fail.
利用单晶表征原子结构后,材料科学和分子生物学迅速取得进展。如果没有单晶,结构测定会更加困难。许多纳米技术中感兴趣的复杂无机材料没有周期性的长程有序结构,因此无法用晶体学方法解析其结构。在此,我们证明结合距离几何方法使用衍射数据来从头求解这些纳米结构材料的结构是可行的。精确到亚埃分辨率的距离数据可通过原子对分布函数(PDF)从实验中获得。当前的PDF分析包括从合理的初始结构猜测进行结构精修,并且先验地并不清楚PDF中是否存在足够的信息来获得唯一的结构解。在此,我们提出并验证了两种从一系列团簇的精确未分配原子间距离进行结构重建的算法。然后我们应用这些算法仅从PDF数据中找到C60的唯一从头结构解。这为纳米材料的亚埃分辨率结构解打开了大门,即使在晶体学方法失效时也是如此。