Maffettone Phillip M, Fletcher William J K, Nicholas Thomas C, Deringer Volker L, Allison Jane R, Smith Lorna J, Goodwin Andrew L
Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK.
School of Biological Sciences, University of Auckland, 1142 Auckland, New Zealand.
Faraday Discuss. 2025 Jan 8;255(0):311-324. doi: 10.1039/d4fd00106k.
The pair distribution function (PDF) is an important metric for characterising structure in complex materials, but it is well known that meaningfully different structural models can sometimes give rise to equivalent PDFs. In this paper, we discuss the use of model likelihoods as a general approach for discriminating between such homometric structure solutions. Drawing on two main case studies-one concerning the structure of a small peptide and the other amorphous calcium carbonate-we show how consideration of model likelihood can help drive robust structure solution, even in cases where the PDF is particularly information-poor. The obvious thread of these individual case studies is the potential role for machine-learning approaches to help guide structure determination from the PDF, and our paper finishes with some forward-looking discussion along these lines.
对分布函数(PDF)是表征复杂材料结构的一个重要指标,但众所周知,有时意义上不同的结构模型会产生等效的PDF。在本文中,我们讨论了使用模型似然性作为区分此类同度量结构解的通用方法。基于两个主要案例研究——一个涉及小肽的结构,另一个涉及无定形碳酸钙——我们展示了即使在PDF信息特别匮乏的情况下,考虑模型似然性如何有助于推动稳健的结构解析。这些个别案例研究的明显线索是机器学习方法在帮助从PDF指导结构确定方面的潜在作用,我们的论文最后沿着这些思路进行了一些前瞻性讨论。