Suppr超能文献

寻找有益突变:在估计新突变适应度效应分布时,根据 SIFT 评分进行条件处理。

Hunting for Beneficial Mutations: Conditioning on SIFT Scores When Estimating the Distribution of Fitness Effect of New Mutations.

机构信息

College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.

Bioinformatics Research Centre, Aarhus University, Denmark.

出版信息

Genome Biol Evol. 2022 Jan 4;14(1). doi: 10.1093/gbe/evab151.

Abstract

The distribution of fitness effects (DFE) of new mutations is a key parameter of molecular evolution. The DFE can in principle be estimated by comparing the site frequency spectra (SFS) of putatively neutral and functional polymorphisms. Unfortunately, the DFE is intrinsically hard to estimate, especially for beneficial mutations because these tend to be exceedingly rare. There is therefore a strong incentive to find out whether conditioning on properties of mutations that are independent of the SFS could provide additional information. In the present study, we developed a new measure based on SIFT scores. SIFT scores are assigned to nucleotide sites based on their level of conservation across a multispecies alignment: the more conserved a site, the more likely mutations occurring at this site are deleterious, and the lower the SIFT score. If one knows the ancestral state at a given site, one can assign a value to new mutations occurring at the site based on the change of SIFT score associated with the mutation. We called this new measure δ. We show that properties of the DFE as well as the flux of beneficial mutations across classes covary with δ and, hence, that SIFT scores are informative when estimating the fitness effect of new mutations. In particular, conditioning on SIFT scores can help to characterize beneficial mutations.

摘要

新突变的适合度效应(DFE)分布是分子进化的一个关键参数。原则上,可以通过比较推测为中性和功能多态性的位点频率谱(SFS)来估计 DFE。不幸的是,DFE 本质上很难估计,特别是对于有益突变,因为这些突变往往极其罕见。因此,人们强烈希望了解是否可以根据与 SFS 无关的突变特性来提供额外的信息。在本研究中,我们开发了一种基于 SIFT 分数的新度量方法。SIFT 分数根据跨多物种比对的保守程度分配给核苷酸位点:一个位点越保守,发生在该位点的突变越可能是有害的,SIFT 分数越低。如果知道给定位点的祖先状态,则可以根据与突变相关的 SIFT 评分变化,为该位点发生的新突变分配一个值。我们将这个新度量称为δ。我们表明,DFE 的性质以及有益突变在类之间的通量与δ相关,因此,当估计新突变的适合度效应时,SIFT 分数是有信息的。特别是,基于 SIFT 分数进行条件处理可以帮助表征有益突变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/948c/8743036/6433814202f0/evab151f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验