Trahan L, Néron S, Bareil M
Ecole de Médecine Dentaire, Université Laval, Ste-Foy, Québec, Canada.
Oral Microbiol Immunol. 1991 Feb;6(1):41-50. doi: 10.1111/j.1399-302x.1991.tb00450.x.
The parental strain Streptococcus sobrinus (Streptococcus mutans ATCC 27352), which is known to transport, phosphorylate and accumulate xylitol intracellularly as nonmetabolizable xylitol-phosphate (xylitol-sensitive (XS) strain) and its xylitol-resistant (XR) spontaneous mutant were used to further investigate the inhibitory action of xylitol on oral streptococci. Fructose-grown XR cells did not accumulate xylitol-phosphate, indicating that the inducible fructose PTS is incapable of transporting the pentitol. The intracellularly accumulated pentitol-phosphate by the XS cells did not prevent the subsequent uptake and degradation of glucose or fructose, despite a drop in the PEP pool and a 50% inhibition of the glucose but not the fructose catabolism. Intracellular dephosphorylation of the pentitol-phosphate and release of xylitol in the extracellular medium resulted in a rapid decrease of the intracellular level of this nonmetabolizable product. A Mg(++)- or Mn(++)-independent sugar-phosphate hydrolysing activity capable of splitting xylitol-phosphate was demonstrated in both XS and XR strains. Preincubation in the presence of N1-ethylmaleimide (NEM) and xylitol or NEM and fructose resulted in the subsequent inhibition of both xylitol uptake and efflux. The efflux kinetic at various temperatures is compatible with a facilitated diffusion by the phosphotransferase system EIIfru without, however, excluding the existence of an additional exit route, but it excludes a simple diffusion exit process. The results are consistent with the existence of a xylitol futile cycle contributing to the growth inhibition of S. sobrinus by the pentitol without excluding a toxic effect of xylitol-phosphate. Discrepancies in the literature on the action of xylitol on S. mutans could be explained in the light of the evidence presented.
亲本菌株远缘链球菌(变形链球菌ATCC 27352),已知其可将木糖醇转运、磷酸化并在细胞内积累为不可代谢的木糖醇磷酸酯(木糖醇敏感(XS)菌株),及其木糖醇抗性(XR)自发突变体被用于进一步研究木糖醇对口腔链球菌的抑制作用。以果糖培养的XR细胞不积累木糖醇磷酸酯,表明诱导型果糖磷酸转移酶系统无法转运戊糖醇。尽管磷酸烯醇式丙酮酸(PEP)池减少且葡萄糖分解代谢受到50%的抑制但果糖分解代谢未受抑制,XS细胞在细胞内积累的戊糖醇磷酸酯并未阻止随后葡萄糖或果糖的摄取和降解。戊糖醇磷酸酯在细胞内脱磷酸化并释放木糖醇到细胞外培养基中,导致这种不可代谢产物的细胞内水平迅速下降。在XS和XR菌株中均证明了一种不依赖Mg(++)或Mn(++)的糖磷酸水解活性,其能够分解木糖醇磷酸酯。在N1-乙基马来酰亚胺(NEM)和木糖醇或NEM和果糖存在下预孵育会导致随后木糖醇摄取和外排均受到抑制。在不同温度下的外排动力学与通过磷酸转移酶系统EIIfru的易化扩散相符合,然而,这并不排除存在额外的输出途径,但排除了简单扩散输出过程。结果与存在一个木糖醇无效循环一致,该循环导致戊糖醇对远缘链球菌的生长抑制,同时不排除木糖醇磷酸酯的毒性作用。根据所提供的证据,可以解释文献中关于木糖醇对变形链球菌作用的差异。