Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
Proc Natl Acad Sci U S A. 1981 Jun;78(6):3308-12. doi: 10.1073/pnas.78.6.3308.
We suggest a purely algebraic construction of the spin representation of an infinite-dimensional orthogonal Lie algebra (sections 1 and 2) and a corresponding group (section 4). From this we deduce a construction of all level-one highest-weight representations of orthogonal affine Lie algebras in terms of creation and annihilation operators on an infinite-dimensional Grassmann algebra (section 3). We also give a similar construction of the level-one representations of the general linear affine Lie algebra in an infinite-dimensional "wedge space." Along these lines we construct the corresponding representations of the universal central extension of the group SL(n)(k[t,t(-1)]) in spaces of sections of line bundles over infinite-dimensional homogeneous spaces (section 5).
我们建议用纯粹的代数构造无限维正交李代数的自旋表示(第 1 和第 2 节)和相应的群(第 4 节)。由此,我们可以推导出用无限维 Grassmann 代数上的产生和湮灭算子来构造正交仿射李代数的所有一级最高权表示(第 3 节)。我们还在一个无限维的“楔空间”中为一般线性仿射李代数的一级表示给出了类似的构造。沿着这些思路,我们在无限维齐次空间上线丛截面的空间中构造了群 SL(n)(k[t,t(-1)])的普遍中心扩张的相应表示(第 5 节)。