Lesaffre Emmanuel, Rizopoulos Dimitris, Tsonaka Roula
Biostatistical Centre, Catholic University of Leuven, U.Z. St. Rafaël, Kapucijnenvoer 35, B-3000 Leuven, Belgium.
Biostatistics. 2007 Jan;8(1):72-85. doi: 10.1093/biostatistics/kxj034. Epub 2006 Apr 5.
The logistic transformation, originally suggested by Johnson (1949), is applied to analyze responses that are restricted to a finite interval (e.g. (0,1)), so-called bounded outcome scores. Bounded outcome scores often have a non-standard distribution, e.g. J- or U-shaped, precluding classical parametric statistical approaches for analysis. Applying the logistic transformation on a normally distributed random variable, gives rise to a logit-normal (LN) distribution. This distribution can take a variety of shapes on (0,1). Further, the model can be extended to correct for (baseline) covariates. Therefore, the method could be useful for comparative clinical trials. Bounded outcomes can be found in many research areas, e.g. drug compliance research, quality-of-life studies, and pain (and pain relief) studies using visual analog scores, but all these scores can attain the boundary values 0 or 1. A natural extension of the above approach is therefore to assume a latent score on 0,1) having a LN distribution. Two cases are considered: (a) the bounded outcome score is a proportion where the true probabilities have a LN distribution on (0,1) and (b) the bounded outcome score on [0,1] is a coarsened version of a latent score with a LN distribution on (0,1). We also allow the variance (on the transformed scale) to depend on treatment. The usefulness of our approach for comparative clinical trials will be assessed in this paper. It turns out to be important to distinguish the case of equal and unequal variances. For a bounded outcome score of the second type and with equal variances, our approach comes close to ordinal probit (OP) regression. However, ignoring the inequality of variances can lead to highly biased parameter estimates. A simulation study compares the performance of our approach with the two-sample Wilcoxon test and with OP regression. Finally, the different methods are illustrated on two data sets.
逻辑变换最初由约翰逊(1949年)提出,用于分析限于有限区间(如(0,1))的反应,即所谓的有界结果分数。有界结果分数通常具有非标准分布,如J形或U形,这使得经典的参数统计分析方法无法适用。对正态分布的随机变量应用逻辑变换,会产生对数正态(LN)分布。这种分布在(0,1)上可以呈现多种形状。此外,该模型可以扩展以校正(基线)协变量。因此,该方法可能对比较临床试验有用。在许多研究领域都可以发现有界结果,例如药物依从性研究、生活质量研究以及使用视觉模拟评分的疼痛(和疼痛缓解)研究,但所有这些分数都可以达到边界值0或1。因此,上述方法的自然扩展是假设在(0,1)上有一个具有LN分布的潜在分数。考虑两种情况:(a) 有界结果分数是一个比例,其中真实概率在(0,1)上具有LN分布;(b) [0,1]上的有界结果分数是(0,1)上具有LN分布的潜在分数的粗化版本。我们还允许方差(在变换尺度上)取决于治疗。本文将评估我们的方法对比较临床试验的有用性。区分方差相等和不相等的情况很重要。对于第二种类型且方差相等的有界结果分数,我们的方法接近有序概率单位(OP)回归。然而,忽略方差的不相等可能导致参数估计出现高度偏差。一项模拟研究比较了我们的方法与两样本威尔科克森检验以及OP回归的性能。最后,在两个数据集上说明了不同的方法。