University of Illinois, Illinois, Chicago.
PLoS One. 2022 Jul 28;17(7):e0271949. doi: 10.1371/journal.pone.0271949. eCollection 2022.
Likert response surveys are widely applied in marketing, public opinion polls, epidemiological and economic disciplines. Theoretically, Likert mapping from real-world beliefs could lose significant amounts of information, as they are discrete categorical metrics. Similarly, the subjective nature of Likert-scale data capture, through questionnaires, holds the potential to inject researcher biases into the statistical analysis. Arguments and counterexamples are provided to show how this loss and bias can potentially be substantial under extreme polarization or strong beliefs held by the surveyed population, and where the survey instruments are poorly controlled. These theoretical possibilities were tested using a large survey with 14 Likert-scaled questions presented to 125,387 respondents in 442 distinct behavioral-demographic groups. Despite the potential for bias and information loss, the empirical analysis found strong support for an assumption of minimal information loss under Normal beliefs in Likert scaled surveys. Evidence from this study found that the Normal assumption is a very good fit to the majority of actual responses, the only variance from Normal being slightly platykurtic (kurtosis ~ 2) which is likely due to censoring of beliefs after the lower and upper extremes of the Likert mapping. The discussion and conclusions argue that further revisions to survey protocols can assure that information loss and bias in Likert-scaled data are minimal.
李克特反应调查在市场营销、民意调查、流行病学和经济学等领域得到了广泛应用。从理论上讲,李克特映射可能会丢失大量的真实世界的信息,因为它们是离散的分类度量。同样,通过问卷调查收集李克特量表数据的主观性也有可能将研究人员的偏见注入到统计分析中。本文提供了一些论据和反例,以表明在极端极化或被调查人群强烈持有的情况下,以及在调查工具控制不力的情况下,这种信息丢失和偏差可能会非常严重。这些理论可能性通过对一个包含 14 个李克特量表问题的大型调查进行了测试,该调查向 442 个不同的行为人口统计学群体中的 125387 名受访者提出。尽管存在偏见和信息丢失的可能性,但实证分析强烈支持在正常信念下李克特量表调查中信息丢失最小的假设。这项研究的证据表明,正态假设非常适合大多数实际响应,唯一的偏离正态的情况是稍微平坦(峰度~2),这可能是由于李克特映射的下限和上限之后对信念进行了屏蔽。讨论和结论认为,进一步修改调查方案可以确保李克特量表数据中的信息丢失和偏差最小化。