Suppr超能文献

用于逆向工程非线性动态贝叶斯模型的语法免疫系统进化

Grammatical Immune System Evolution for reverse engineering nonlinear dynamic Bayesian models.

作者信息

McKinney B A, Tian D

机构信息

Department of Genetics, University of Alabama School of Medicine, Birmingham, AL 35294, USA.

出版信息

Cancer Inform. 2008;6:433-47. doi: 10.4137/cin.s694. Epub 2008 Aug 28.

Abstract

An artificial immune system algorithm is introduced in which nonlinear dynamic models are evolved to fit time series of interacting biomolecules. This grammar-based machine learning method learns the structure and parameters of the underlying dynamic model. In silico immunogenetic mechanisms for the generation of model-structure diversity are implemented with the aid of a grammar, which also enforces semantic constraints of the evolved models. The grammar acts as a DNA repair polymerase that can identify recombination and hypermutation signals in the antibody (model) genome. These signals contain information interpretable by the grammar to maintain model context. Grammatical Immune System Evolution (GISE) is applied to a nonlinear system identification problem in which a generalized (nonlinear) dynamic Bayesian model is evolved to fit biologically motivated artificial time-series data. From experimental data, we use GISE to infer an improved kinetic model for the oxidative metabolism of 17beta-estradiol (E(2)), the parent hormone of the estrogen metabolism pathway.

摘要

本文介绍了一种人工免疫系统算法,该算法通过进化非线性动力学模型来拟合相互作用生物分子的时间序列。这种基于语法的机器学习方法能够学习潜在动力学模型的结构和参数。借助一种语法实现了用于生成模型结构多样性的计算机免疫遗传机制,该语法还能强化进化模型的语义约束。该语法充当DNA修复聚合酶,可识别抗体(模型)基因组中的重组和超突变信号。这些信号包含可由语法解释的信息,以维持模型上下文。语法免疫系统进化(GISE)被应用于一个非线性系统识别问题,其中进化出一个广义(非线性)动态贝叶斯模型来拟合具有生物学动机的人工时间序列数据。从实验数据出发,我们使用GISE来推断雌激素代谢途径中母体激素17β-雌二醇(E₂)氧化代谢的改进动力学模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8539/2623294/bb6fb9d1df25/cin-6-0433f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验