Pyragas V, Pyragas K
Semiconductor Physics Institute, LT-01108 Vilnius, Lithuania.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Mar;73(3 Pt 2):036215. doi: 10.1103/PhysRevE.73.036215. Epub 2006 Mar 22.
We develop an analytical approach for the delayed feedback control of the Lorenz system close to a subcritical Hopf bifurcation. The periodic orbits arising at this bifurcation have no torsion and cannot be stabilized by a conventional delayed feedback control technique. We utilize a modification based on an unstable delayed feedback controller. The analytical approach employs the center manifold theory and the near identity transformation. We derive the characteristic equation for the Floquet exponents of the controlled orbit in an analytical form and obtain simple expressions for the threshold of stability as well as for an optimal value of the control gain. The analytical results are supported by numerical analysis of the original system of nonlinear differential-difference equations.
我们针对接近亚临界霍普夫分岔的洛伦兹系统的延迟反馈控制开发了一种分析方法。在此分岔处出现的周期轨道没有挠率,并且不能通过传统的延迟反馈控制技术来稳定。我们利用基于不稳定延迟反馈控制器的一种改进方法。该分析方法采用中心流形理论和近似恒等变换。我们以解析形式推导了受控轨道的弗洛凯指数的特征方程,并获得了稳定性阈值以及控制增益最优值的简单表达式。原始非线性微分 - 差分方程组的数值分析支持了这些分析结果。