Suppr超能文献

驳斥延迟反馈控制的奇数限制。

Refuting the odd-number limitation of time-delayed feedback control.

作者信息

Fiedler B, Flunkert V, Georgi M, Hövel P, Schöll E

机构信息

Institut für Mathematik I, FU Berlin, Arnimallee 2-6, D-14195 Berlin, Germany.

出版信息

Phys Rev Lett. 2007 Mar 16;98(11):114101. doi: 10.1103/PhysRevLett.98.114101. Epub 2007 Mar 14.

Abstract

We refute an often invoked theorem which claims that a periodic orbit with an odd number of real Floquet multipliers greater than unity can never be stabilized by time-delayed feedback control in the form proposed by Pyragas. Using a generic normal form, we demonstrate that the unstable periodic orbit generated by a subcritical Hopf bifurcation, which has a single real unstable Floquet multiplier, can in fact be stabilized. We derive explicit analytical conditions for the control matrix in terms of the amplitude and the phase of the feedback control gain, and present a numerical example. Our results are of relevance for a wide range of systems in physics, chemistry, technology, and life sciences, where subcritical Hopf bifurcations occur.

摘要

我们反驳了一个经常被引用的定理,该定理声称,具有奇数个大于1的实弗洛凯乘数的周期轨道永远无法通过皮拉加斯提出的那种形式的时滞反馈控制来稳定。使用一般范式,我们证明了由亚临界霍普夫分岔产生的具有单个实不稳定弗洛凯乘数的不稳定周期轨道实际上可以被稳定。我们根据反馈控制增益的幅度和相位推导出控制矩阵的明确解析条件,并给出一个数值例子。我们的结果与物理、化学、技术和生命科学中发生亚临界霍普夫分岔的广泛系统相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验