Omi Taketo, Omori Toshiaki
Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
Center for Mathematical and Data Sciences, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
Entropy (Basel). 2024 Jul 30;26(8):653. doi: 10.3390/e26080653.
Estimating and controlling dynamical systems from observable time-series data are essential for understanding and manipulating nonlinear dynamics. This paper proposes a probabilistic framework for simultaneously estimating and controlling nonlinear dynamics under noisy observation conditions. Our proposed method utilizes the particle filter not only as a state estimator and a prior estimator for the dynamics but also as a controller. This approach allows us to handle the nonlinearity of the dynamics and uncertainty of the latent state. We apply two distinct dynamics to verify the effectiveness of our proposed framework: a chaotic system defined by the Lorenz equation and a nonlinear neuronal system defined by the Morris-Lecar neuron model. The results indicate that our proposed framework can simultaneously estimate and control complex nonlinear dynamical systems.
从可观测的时间序列数据估计和控制动态系统对于理解和操纵非线性动力学至关重要。本文提出了一个概率框架,用于在噪声观测条件下同时估计和控制非线性动力学。我们提出的方法不仅将粒子滤波器用作状态估计器和动力学的先验估计器,还用作控制器。这种方法使我们能够处理动力学的非线性和潜在状态的不确定性。我们应用两种不同的动力学来验证我们提出的框架的有效性:由洛伦兹方程定义的混沌系统和由莫里斯-莱卡神经元模型定义的非线性神经元系统。结果表明,我们提出的框架可以同时估计和控制复杂的非线性动态系统。