Sha Qiuying, Dong Jianping, Jiang Renfang, Zhang Shuanglin
Department of Mathematical Sciences, Michigan Technological University, 1400 Townsend Avenue, Houghton, MI 49931, USA.
Ann Hum Genet. 2005 Nov;69(Pt 6):715-32. doi: 10.1111/j.1529-8817.2005.00216.x.
Candidate gene association tests are currently performed using several intragenic SNPs simultaneously, by testing SNP haplotype or genotype effects in multifactorial diseases or traits. The number of haplotypes drastically increases with an increase in the number of typed SNPs. As a result, large numbers of haplotypes will introduce large degrees of freedom in haplotype-based tests, and thus limit the power of the tests. In this study we propose using the principal component method to reduce the dimension, and then construct association tests on the lower-dimensional space to test the association between haplotypes and a quantitative trait using population-based samples. The proposed method allows ambiguous haplotypes. We use simulation studies to evaluate the type I error rate of the tests, and compare the power of the proposed tests with that of the tests without dimension reduction, and the tests with dimension reduction by merging rare haplotypes. The simulation results show that the proposed tests have correct type I error rates and are more powerful than other tests in most cases considered in our simulation studies.
目前,候选基因关联测试是通过在多因素疾病或性状中测试单核苷酸多态性(SNP)单倍型或基因型效应,同时使用多个基因内SNP来进行的。随着分型SNP数量的增加,单倍型的数量会急剧增加。因此,大量的单倍型会在基于单倍型的测试中引入大量自由度,从而限制测试的效能。在本研究中,我们提出使用主成分法进行降维,然后在低维空间构建关联测试,以使用基于人群的样本测试单倍型与数量性状之间的关联。所提出的方法允许存在模糊单倍型。我们使用模拟研究来评估测试的I型错误率,并将所提出测试的效能与未进行降维的测试以及通过合并罕见单倍型进行降维的测试的效能进行比较。模拟结果表明,所提出的测试具有正确的I型错误率,并且在我们模拟研究中考虑的大多数情况下比其他测试更具效能。