Department of Statistics, George Mason University, MS 4A7, 4400 University Drive, Fairfax, VA 22030-4444, USA.
Genet Epidemiol. 2010 Apr;34(3):232-7. doi: 10.1002/gepi.20453.
Many complex human diseases such as alcoholism and cancer are rated on ordinal scales. Well-developed statistical methods for the genetic mapping of quantitative traits may not be appropriate for ordinal traits. We propose a class of variance-component models for the joint linkage and association analysis of ordinal traits. The proposed models accommodate arbitrary pedigrees and allow covariates and gene-environment interactions. We develop efficient likelihood-based inference procedures under the proposed models. The maximum likelihood estimators are approximately unbiased, normally distributed, and statistically efficient. Extensive simulation studies demonstrate that the proposed methods perform well in practical situations. An application to data from the Collaborative Study on the Genetics of Alcoholism is provided.
许多复杂的人类疾病,如酗酒和癌症,都是用序数量表来评定的。针对数量性状的遗传图谱制定的完善的统计学方法可能并不适用于序数性状。我们提出了一类用于序数性状连锁和关联分析的方差分量模型。所提出的模型可适应任意的家系,并允许协变量和基因-环境相互作用。我们在提出的模型下开发了有效的基于似然的推断程序。最大似然估计量是近似无偏的、正态分布的和统计有效的。广泛的模拟研究表明,所提出的方法在实际情况下表现良好。本文提供了一个对来自酒精遗传合作研究数据的应用。