Wang Hansong, Thomas Duncan C, Pe'er Itsik, Stram Daniel O
Division of Biostatistics and Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
Genet Epidemiol. 2006 May;30(4):356-68. doi: 10.1002/gepi.20150.
The much-anticipated fixed-array, genome-wide SNP genotyping technologies make large-scale genome-wide association scans now possible for large numbers of subjects. In this paper we reconsider the problem (Satagopan and Elston [2003] Genet Epidemiol 25:149-157) of optimizing a two-stage genotyping design to deal with important new issues that are relevant when studies are expanded from candidate gene size to a genome-wide scale. We investigate how the basic two-stage genotyping approach, in which all markers are genotyped in an initial group of subjects (stage I) and only the promising markers are genotyped in additional subjects (stage II), can be used to reduce genotyping cost in a genome-wide case-control association study even after allowing for much higher per genotype costs using specially designed assays in stage II, compared to the fixed array of SNPs used in stage I. In addition, we consider the problem of using measured SNPs to make (imperfect) prediction of unmeasured SNPs for association tests of all SNPs (measured or unmeasured) genome wide and the utility of expanding genotyping densities in stage II in the regions where significant associations were detected in stage I. Under a set of reasonable but conservative assumptions, we derive optimal two-stage design configurations (sample sizes and the thresholds of significance in both stages) with these optimal designs depending both on the total number of markers tested and upon the ratios of cost in stage II versus stage I. In addition we show how existing software for power and sample size calculations can be used for the purpose of designing two-stage studies, for a wide range of assumptions about the number of markers genotyped and the costs of genotyping in each stage of the study.
备受期待的固定阵列全基因组单核苷酸多态性(SNP)基因分型技术,使得对大量受试者进行大规模全基因组关联扫描成为可能。在本文中,我们重新审视了一个问题(Satagopan和Elston [2003]《遗传流行病学》25:149 - 157),即优化两阶段基因分型设计,以应对当研究从候选基因规模扩展到全基因组规模时出现的重要新问题。我们研究了基本的两阶段基因分型方法,即在初始受试者组(第一阶段)中对所有标记进行基因分型,而仅在额外受试者(第二阶段)中对有前景的标记进行基因分型,如何用于降低全基因组病例对照关联研究中的基因分型成本,即便在第二阶段使用专门设计的检测方法时每个基因型的成本比第一阶段使用的固定SNP阵列要高得多。此外,我们考虑了利用已测量的SNP对未测量的SNP进行(不完美)预测,以用于全基因组所有SNP(已测量或未测量)的关联测试的问题,以及在第一阶段检测到显著关联的区域中增加第二阶段基因分型密度的效用。在一组合理但保守的假设下,我们得出了最优的两阶段设计配置(样本量和两个阶段的显著性阈值),这些最优设计既取决于所测试标记的总数,也取决于第二阶段与第一阶段的成本比。此外,我们展示了现有的功效和样本量计算软件如何用于设计两阶段研究,适用于关于基因分型标记数量和研究每个阶段基因分型成本的广泛假设。