De Michele Cristiano, Gabrielli Simone, Tartaglia Piero, Sciortino Francesco
Dipartimento di Fisica and INFM-CRS-SOFT, Università di Roma La Sapienza, Piazzale A. Moro 2, 00185 Rome, Italy.
J Phys Chem B. 2006 Apr 20;110(15):8064-79. doi: 10.1021/jp056380y.
We report extensive Monte Carlo and event-driven molecular dynamics simulations of a liquid composed of particles interacting via hard-sphere interactions complemented by four tetrahedrally coordinated short-range attractive ("sticky") spots, a model introduced several years ago by Kolafa and Nezbeda (Kolafa, J.; Nezbeda, I. Mol. Phys. 1987, 87, 161). To access the dynamic properties of the model, we introduce and implement a new event-driven molecular dynamics algorithm suited to study the evolution of hard bodies interacting, beside the repulsive hard-core, with a short-ranged interpatch square well potential. We evaluate the thermodynamic properties of the model in deep supercooled states, where the bond network is fully developed, providing evidence of density anomalies. Different from models of spherically symmetric interacting particles, the liquid can be supercooled without encountering the gas-liquid spinodal in a wide region of packing fractions phi. Around an optimal phi, a stable fully connected tetrahedral network of bonds develops. By analyzing the dynamics of the model we find evidence of anomalous behavior: around the optimal packing, dynamics accelerate on both increasing and decreasing phi. We locate the shape of the isodiffusivity lines in the (phi - T) plane and establish the shape of the dynamic arrest line in the phase diagram of the model. Results are discussed in connection with colloidal dispersions of sticky particles and gel-forming proteins and their ability to form dynamically arrested states.
我们报告了对一种液体进行的广泛的蒙特卡罗和事件驱动分子动力学模拟,该液体由通过硬球相互作用相互作用的粒子组成,并辅以四个四面体配位的短程吸引(“粘性”)位点,这是Kolafa和Nezbeda几年前引入的模型(Kolafa,J.;Nezbeda,I. Mol. Phys. 1987,87,161)。为了获取该模型的动力学性质,我们引入并实现了一种新的事件驱动分子动力学算法,该算法适用于研究除排斥硬核外,通过短程补丁间方阱势相互作用的刚体的演化。我们评估了该模型在深度过冷状态下的热力学性质,此时键网络已完全形成,提供了密度异常的证据。与球形对称相互作用粒子的模型不同,该液体在很宽的填充率φ区域内可以过冷而不会遇到气液旋节线。在一个最佳φ附近,会形成一个稳定的完全连接的四面体键网络。通过分析该模型的动力学,我们发现了异常行为的证据:在最佳填充附近,动力学在φ增加和减少时都会加速。我们确定了(φ - T)平面中等扩散率线的形状,并确定了该模型相图中动态阻滞线的形状。结合粘性粒子的胶体分散体和形成凝胶的蛋白质及其形成动态阻滞状态的能力对结果进行了讨论。