Stuhlmüller Nico C X, Farrokhzad Farzaneh, Kuświk Piotr, Stobiecki Feliks, Urbaniak Maciej, Akhundzada Sapida, Ehresmann Arno, Fischer Thomas M, de Las Heras Daniel
Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440, Bayreuth, Germany.
Experimatalphysik X, Physikalisches Institut, Universität Bayreuth, D-95440, Bayreuth, Germany.
Nat Commun. 2023 Nov 18;14(1):7517. doi: 10.1038/s41467-023-43390-0.
Topological protection ensures stability of information and particle transport against perturbations. We explore experimentally and computationally the topologically protected transport of magnetic colloids above spatially inhomogeneous magnetic patterns, revealing that transport complexity can be encoded in both the driving loop and the pattern. Complex patterns support intricate transport modes when the microparticles are subjected to simple time-periodic loops of a uniform magnetic field. We design a pattern featuring a topological defect that functions as an attractor or a repeller of microparticles, as well as a pattern that directs microparticles along a prescribed complex trajectory. Using simple patterns and complex loops, we simultaneously and independently control the motion of several identical microparticles differing only in their positions above the pattern. Combining complex patterns and complex loops we transport microparticles from unknown locations to predefined positions and then force them to follow arbitrarily complex trajectories concurrently. Our findings pave the way for new avenues in transport control and dynamic self-assembly in colloidal science.
拓扑保护确保了信息和粒子传输免受扰动的稳定性。我们通过实验和计算探索了磁性胶体在空间不均匀磁模式上方的拓扑保护传输,揭示了传输复杂性可以编码在驱动回路和模式中。当微粒受到均匀磁场的简单时间周期回路作用时,复杂模式支持复杂的传输模式。我们设计了一种具有拓扑缺陷的模式,该缺陷可作为微粒的吸引子或排斥子,以及一种引导微粒沿规定复杂轨迹运动的模式。使用简单模式和复杂回路,我们同时且独立地控制几个仅在模式上方位置不同的相同微粒的运动。结合复杂模式和复杂回路,我们将微粒从未知位置传输到预定义位置,然后迫使它们同时遵循任意复杂轨迹。我们的发现为胶体科学中的传输控制和动态自组装开辟了新途径。