d'Enfert Christophe
Unité Postulante Biologie et Pathogénicité Fongiques, INRA USC 2019, Institut Pasteur, Paris, France.
Curr Drug Targets. 2006 Apr;7(4):465-70. doi: 10.2174/138945006776359458.
Fungal pathogens of the genus Candida form biofilms on catheters and prosthetic devices. These three-dimensional structures composed of yeast and hyphal cells embedded in an extracellular matrix constitute an important pitfall in the management of disseminated Candida infections because of their intrinsic resistance to almost all antifungals in clinical use. Candida biofilms are especially resistant to azoles and amphotericin B but remain sensitive to the newly introduced echinocandins that target cell wall beta-glucan biosynthesis. Antifungal resistance of biofilms results most probably from the conjunction of several mechanisms that act in a time-dependent manner. While drug efflux is likely to contribute to resistance during the early phases of biofilm formation, changes in the sterol composition of membranes might explain the resistance of mature biofilms. The original physiology of mature Candida biofilms is mirrored by specific gene expression patterns that may pinpoint genes important for the acquisition of pleiotropic antifungal resistance.
念珠菌属的真菌病原体可在导管和假体装置上形成生物膜。这些由嵌入细胞外基质的酵母细胞和菌丝细胞组成的三维结构,是播散性念珠菌感染治疗中的一个重要难题,因为它们对几乎所有临床使用的抗真菌药物都具有内在抗性。念珠菌生物膜对唑类和两性霉素B尤其耐药,但对新引入的靶向细胞壁β-葡聚糖生物合成的棘白菌素仍敏感。生物膜的抗真菌耐药性很可能是由多种以时间依赖性方式起作用的机制共同导致的。虽然药物外排在生物膜形成的早期阶段可能有助于耐药性,但膜固醇组成的变化可能解释成熟生物膜的耐药性。成熟念珠菌生物膜的原始生理学特征通过特定的基因表达模式得以体现,这些模式可能会找出对获得多效性抗真菌耐药性很重要的基因。