Suppr超能文献

抗真菌药物耐药性:进化、机制和影响。

Antifungal drug resistance: evolution, mechanisms and impact.

机构信息

Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada.

Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada.

出版信息

Curr Opin Microbiol. 2018 Oct;45:70-76. doi: 10.1016/j.mib.2018.02.005. Epub 2018 Mar 13.

Abstract

Microorganisms have a remarkable capacity to evolve resistance to antimicrobial agents, threatening the efficacy of the limited arsenal of antimicrobials and becoming a dire public health crisis. This is of particular concern for fungal pathogens, which cause devastating invasive infections with treatment options limited to only three major classes of antifungal drugs. The paucity of antifungals with clinical utility is in part due to close evolutionary relationships between these eukaryotic pathogens and their human hosts, which limits the unique targets to be exploited therapeutically. This review highlights the mechanisms by which fungal pathogens of humans evolve resistance to antifungal drugs, which provide crucial insights to enable development of novel therapeutic strategies to thwart drug resistance and combat fungal infectious disease.

摘要

微生物具有对抗生素产生耐药性的惊人能力,这威胁到有限的抗生素储备的疗效,成为一个严重的公共卫生危机。这对于真菌病原体尤其令人担忧,因为它们会导致破坏性的侵袭性感染,而治疗选择仅限于三种主要类别的抗真菌药物。具有临床应用价值的抗真菌药物的缺乏部分是由于这些真核病原体与其人类宿主之间密切的进化关系,这限制了可用于治疗的独特靶点。这篇综述强调了人类真菌感染病原体对抗真菌药物产生耐药性的机制,这些机制为开发新的治疗策略以阻止耐药性和对抗真菌感染性疾病提供了至关重要的见解。

相似文献

1
Antifungal drug resistance: evolution, mechanisms and impact.
Curr Opin Microbiol. 2018 Oct;45:70-76. doi: 10.1016/j.mib.2018.02.005. Epub 2018 Mar 13.
2
Antifungals discovery: an insight into new strategies to combat antifungal resistance.
Lett Appl Microbiol. 2018 Jan;66(1):2-13. doi: 10.1111/lam.12820. Epub 2017 Dec 11.
3
Genesis of Azole Antifungal Resistance from Agriculture to Clinical Settings.
J Agric Food Chem. 2015 Sep 2;63(34):7463-8. doi: 10.1021/acs.jafc.5b02728. Epub 2015 Aug 25.
4
Potential targets for the development of new antifungal drugs.
J Antibiot (Tokyo). 2018 Nov;71(12):978-991. doi: 10.1038/s41429-018-0100-9. Epub 2018 Sep 21.
5
Antifungal Drugs: The Current Armamentarium and Development of New Agents.
Microbiol Spectr. 2016 Oct;4(5). doi: 10.1128/microbiolspec.FUNK-0002-2016.
6
The fungal resistome: a risk and an opportunity for the development of novel antifungal therapies.
Future Med Chem. 2016 Aug;8(12):1503-20. doi: 10.4155/fmc-2016-0051. Epub 2016 Aug 3.
7
Antifungal drug screening: thinking outside the box to identify novel antifungal scaffolds.
Curr Opin Microbiol. 2020 Oct;57:1-6. doi: 10.1016/j.mib.2020.03.005. Epub 2020 Apr 24.
8
Novel Approaches for Efficient Antifungal Drug Action.
J Microbiol Biotechnol. 2018 Nov 28;28(11):1771-1781. doi: 10.4014/jmb.1807.07002.
9
Antifungal therapy with an emphasis on biofilms.
Curr Opin Pharmacol. 2013 Oct;13(5):726-30. doi: 10.1016/j.coph.2013.08.008. Epub 2013 Sep 4.
10
Fungal Biofilms: Update on Resistance.
Adv Exp Med Biol. 2016;931:37-47. doi: 10.1007/5584_2016_7.

引用本文的文献

2
The Role of Drug Resistance in Candida Inflammation and Fitness.
Microorganisms. 2025 Jul 30;13(8):1777. doi: 10.3390/microorganisms13081777.
3
Potential Application of Plant By-Products in Biomedicine: From Current Knowledge to Future Opportunities.
Antioxidants (Basel). 2025 Jul 31;14(8):942. doi: 10.3390/antiox14080942.
5
6
Leveraging synthetic genetic array screening to identify therapeutic targets and inhibitors for combatting azole resistance in .
Microbiol Spectr. 2025 Sep 2;13(9):e0252224. doi: 10.1128/spectrum.02522-24. Epub 2025 Aug 11.
7
Crystal structure of the fungal mannosyltransferase Och1 reveals active site primed for N-glycan binding.
PLoS One. 2025 Jul 31;20(7):e0329259. doi: 10.1371/journal.pone.0329259. eCollection 2025.
8
Extended Antimicrobial Profile of Chromone-Butenafine Hybrids.
Molecules. 2025 Jul 15;30(14):2973. doi: 10.3390/molecules30142973.
9
Antifungal resistance: Emerging mechanisms and implications (Review).
Mol Med Rep. 2025 Sep;32(3). doi: 10.3892/mmr.2025.13612. Epub 2025 Jul 11.
10
Bioactive Plant Compounds as Alternatives Against Antifungal Resistance in the Strains.
Pharmaceutics. 2025 May 23;17(6):687. doi: 10.3390/pharmaceutics17060687.

本文引用的文献

1
Chemogenomic Profiling of the Fungal Pathogen Candida albicans.
Antimicrob Agents Chemother. 2018 Jan 25;62(2). doi: 10.1128/AAC.02365-17. Print 2018 Feb.
3
An acquired mechanism of antifungal drug resistance simultaneously enables Candida albicans to escape from intrinsic host defenses.
PLoS Pathog. 2017 Sep 27;13(9):e1006655. doi: 10.1371/journal.ppat.1006655. eCollection 2017 Sep.
5
Antifungal resistance: current trends and future strategies to combat.
Infect Drug Resist. 2017 Aug 29;10:249-259. doi: 10.2147/IDR.S124918. eCollection 2017.
6
Parasex Generates Phenotypic Diversity and Impacts Drug Resistance and Virulence in .
Genetics. 2017 Nov;207(3):1195-1211. doi: 10.1534/genetics.117.300295. Epub 2017 Sep 14.
8
Molecular Evolution of Antifungal Drug Resistance.
Annu Rev Microbiol. 2017 Sep 8;71:753-775. doi: 10.1146/annurev-micro-030117-020345.
9
Functional annotation of chemical libraries across diverse biological processes.
Nat Chem Biol. 2017 Sep;13(9):982-993. doi: 10.1038/nchembio.2436. Epub 2017 Jul 24.
10
Azole Resistance in : A Consequence of Antifungal Use in Agriculture?
Front Microbiol. 2017 Jun 7;8:1024. doi: 10.3389/fmicb.2017.01024. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验