Suppr超能文献

用于获取无创近红外血糖监测校准模型的新方法。

New methodology to obtain a calibration model for noninvasive near-infrared blood glucose monitoring.

作者信息

Maruo Katsuhiko, Oota Tomohiro, Tsurugi Mitsuhiro, Nakagawa Takehiro, Arimoto Hidenobu, Tamura Mamoru, Ozaki Yukihiro, Yamada Yukio

机构信息

Matsushita Electric Works Ltd., Kadoma, Osaka 571-8686, Japan.

出版信息

Appl Spectrosc. 2006 Apr;60(4):441-9. doi: 10.1366/000370206776593780.

Abstract

This paper reports new methodology to obtain a calibration model for noninvasive blood glucose monitoring using diffuse reflectance near-infrared (NIR) spectroscopy. Conventional studies of noninvasive blood glucose monitoring with NIR spectroscopy use a calibration model developed by in vivo experimental data sets. In order to create a calibration model, we have used a numerical simulation of light propagation in skin tissue to obtain simulated NIR diffuse reflectance spectra. The numerical simulation method enables us to design parameters affecting the prediction of blood glucose levels and their variation ranges for a data set to create a calibration model using multivariate analysis without any in vivo experiments in advance. By designing the parameters and their variation ranges appropriately, we can prevent a calibration model from chance temporal correlations that are often observed in conventional studies using NIR spectroscopy. The calibration model (regression coefficient vector) obtained by the numerical simulation has a characteristic positive peak at the wavelength around 1600 nm. This characteristic feature of the regression coefficient vector is very similar to those obtained by our previous in vitro and in vivo experimental studies. This positive peak at around 1600 nm also corresponds to the characteristic absorption band of glucose. The present study has reinforced that the characteristic absorbance of glucose at around 1600 nm is useful to predict the blood glucose level by diffuse reflectance NIR spectroscopy. We have validated this new calibration methodology using in vivo experiments. As a result, we obtained a coefficient of determination, r2, of 0.87 and a standard error of prediction (SEP) of 12.3 mg/dL between the predicted blood glucose levels and the reference blood glucose levels for all the experiments we have conducted. These results of in vivo experiments indicate that if the parameters and their vibration ranges are appropriately taken into account in a numerical simulation, the new calibration methodology provides us with a very good calibration model that can predict blood glucose levels with small errors without conducting any experiments in advance to create a calibration model for each individual patient. This new calibration methodology using numerical simulation has promising potential for NIR spectroscopy, especially for noninvasive blood glucose monitoring.

摘要

本文报道了一种新方法,用于获得使用漫反射近红外(NIR)光谱进行无创血糖监测的校准模型。传统的近红外光谱无创血糖监测研究使用由体内实验数据集开发的校准模型。为了创建校准模型,我们使用了皮肤组织中光传播的数值模拟来获得模拟的近红外漫反射光谱。这种数值模拟方法使我们能够设计影响血糖水平预测及其数据集变化范围的参数,从而在无需事先进行任何体内实验的情况下,使用多变量分析创建校准模型。通过适当地设计参数及其变化范围,我们可以防止校准模型出现传统近红外光谱研究中经常观察到的偶然时间相关性。通过数值模拟获得的校准模型(回归系数向量)在1600 nm左右的波长处有一个特征性的正峰。回归系数向量的这一特征与我们之前的体外和体内实验研究获得的特征非常相似。1600 nm左右的这个正峰也对应于葡萄糖的特征吸收带。本研究进一步证实,1600 nm左右葡萄糖的特征吸光度可用于通过漫反射近红外光谱预测血糖水平。我们已通过体内实验验证了这种新的校准方法。结果,在我们进行的所有实验中,预测血糖水平与参考血糖水平之间的决定系数r2为0.87,预测标准误差(SEP)为12.3 mg/dL。这些体内实验结果表明,如果在数值模拟中适当考虑参数及其变化范围,这种新的校准方法可为我们提供一个非常好的校准模型,该模型无需事先为每个患者进行实验来创建校准模型,就能以较小误差预测血糖水平。这种使用数值模拟的新校准方法在近红外光谱领域,尤其是无创血糖监测方面具有广阔的应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验