Suppr超能文献

在牙齿移动模型中,机械负荷刺激牙槽骨细胞中连接蛋白43的表达。

Mechanical loading stimulates expression of connexin 43 in alveolar bone cells in the tooth movement model.

作者信息

Gluhak-Heinrich Jelica, Gu Sumin, Pavlin Dubravko, Jiang Jean X

机构信息

Department of Orthodontics, University of Texas Health Science Center, San Antonio, 78229-3900, USA.

出版信息

Cell Commun Adhes. 2006 Jan-Apr;13(1-2):115-25. doi: 10.1080/15419060600634619.

Abstract

Bone osteoblasts and osteocytes express large amounts of connexin (Cx) 43, the component of gap junctions and hemichannels. Previous studies have shown that these channels play important roles in regulating biological functions in response to mechanical loading. Here, we characterized the distribution of mRNA and protein of Cx43 in mechanical loading model of tooth movement. The locations of bone formation and resorption have been well defined in this model, which provides unique experimental systems for better understanding of potential roles of Cx43 in bone formation and remodeling under mechanical stimulation. We found that mechanical loading increased Cx43 mRNA expression in osteoblasts and bone lining cells, but not in osteocytes, at both formation and resorption sites. Cx43 protein, however, increased in both osteoblasts and osteocytes in response to loading. Interestingly, the upregulation of Cx43 protein by loading was even more pronounced in osteocytes compared to other bone cells, with an appearance of punctate staining on the cell body and dendritic process. Cx45 was reported to be expressed in several bone cell lines, but here we did not detect the Cx45 protein in the alveolar bone cells. These results further suggest the potential involvement of Cx43-forming gap junctions and hemichannels in the process of mechanically induced bone formation and resorption.

摘要

骨成骨细胞和骨细胞表达大量的连接蛋白(Cx)43,其为间隙连接和半通道的组成成分。先前的研究表明,这些通道在响应机械负荷调节生物学功能中发挥重要作用。在此,我们在牙齿移动的机械负荷模型中对Cx43的mRNA和蛋白分布进行了表征。在该模型中,骨形成和吸收的位置已得到明确界定,这为更好地理解Cx43在机械刺激下骨形成和重塑中的潜在作用提供了独特的实验系统。我们发现,在形成和吸收部位,机械负荷均增加了成骨细胞和骨衬细胞中Cx43 mRNA的表达,但未增加骨细胞中的表达。然而,Cx43蛋白在成骨细胞和骨细胞中均因负荷而增加。有趣的是,与其他骨细胞相比,负荷对Cx43蛋白的上调在骨细胞中更为明显,在细胞体和树突状突起上出现点状染色。据报道,Cx45在几种骨细胞系中表达,但在此我们未在牙槽骨细胞中检测到Cx45蛋白。这些结果进一步表明,形成Cx43的间隙连接和半通道可能参与了机械诱导的骨形成和吸收过程。

相似文献

1
Mechanical loading stimulates expression of connexin 43 in alveolar bone cells in the tooth movement model.
Cell Commun Adhes. 2006 Jan-Apr;13(1-2):115-25. doi: 10.1080/15419060600634619.
2
The Role of Connexin Channels in the Response of Mechanical Loading and Unloading of Bone.
Int J Mol Sci. 2020 Feb 9;21(3):1146. doi: 10.3390/ijms21031146.
3
Fluid shear stress remodels expression and function of junctional proteins in cultured bone cells.
Am J Physiol Cell Physiol. 2003 Feb;284(2):C389-403. doi: 10.1152/ajpcell.00052.2002. Epub 2002 Oct 3.
4
Gap junctions and hemichannels in signal transmission, function and development of bone.
Biochim Biophys Acta. 2012 Aug;1818(8):1909-18. doi: 10.1016/j.bbamem.2011.09.018. Epub 2011 Sep 22.
7
Gap-junctional regulation of osteoclast function.
Crit Rev Eukaryot Gene Expr. 2003;13(2-4):133-46. doi: 10.1615/critreveukaryotgeneexpr.v13.i24.70.
8
Direct regulation of osteocytic connexin 43 hemichannels through AKT kinase activated by mechanical stimulation.
J Biol Chem. 2014 Apr 11;289(15):10582-10591. doi: 10.1074/jbc.M114.550608. Epub 2014 Feb 22.
9
Cx43 and mechanotransduction in bone.
Curr Osteoporos Rep. 2015 Apr;13(2):67-72. doi: 10.1007/s11914-015-0255-2.
10
Shifting paradigms on the role of connexin43 in the skeletal response to mechanical load.
J Bone Miner Res. 2014 Feb;29(2):275-86. doi: 10.1002/jbmr.2165.

引用本文的文献

1
Osteocytes function as biomechanical signaling hubs bridging mechanical stress sensing and systemic adaptation.
Front Physiol. 2025 Jul 15;16:1629273. doi: 10.3389/fphys.2025.1629273. eCollection 2025.
2
Connexin 43 in the function and homeostasis of osteocytes: a narrative review.
Ann Jt. 2023 Dec 19;9:10. doi: 10.21037/aoj-23-65. eCollection 2024.
3
Alveolar bone response distal to applied orthodontic forces in ovariectomized rats.
J Musculoskelet Neuronal Interact. 2022 Jun 1;22(2):235-241.
4
Strain uses gap junctions to reverse stimulation of osteoblast proliferation by osteocytes.
Cell Biochem Funct. 2017 Jan;35(1):56-65. doi: 10.1002/cbf.3245.
5
Current concepts of bone tissue engineering for craniofacial bone defect repair.
Craniomaxillofac Trauma Reconstr. 2015 Mar;8(1):23-30. doi: 10.1055/s-0034-1393724. Epub 2014 Nov 18.
6
Connexin 43 channels are essential for normal bone structure and osteocyte viability.
J Bone Miner Res. 2015 Mar;30(3):436-48. doi: 10.1002/jbmr.2374.
8
Gap Junctions and Biophysical Regulation of Bone Cells.
Clin Rev Bone Miner Metab. 2010 Dec 1;8(4):189-200. doi: 10.1007/s12018-011-9084-8.

本文引用的文献

1
Molecular pathways mediating mechanical signaling in bone.
Gene. 2006 Feb 15;367:1-16. doi: 10.1016/j.gene.2005.10.028. Epub 2005 Dec 19.
2
Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin.
Mol Biol Cell. 2005 Jul;16(7):3100-6. doi: 10.1091/mbc.e04-10-0912. Epub 2005 Apr 20.
4
On bone adaptation due to venous stasis.
J Biomech. 2003 Oct;36(10):1439-51. doi: 10.1016/s0021-9290(03)00241-0.
5
"Whither flows the fluid in bone?" An osteocyte's perspective.
J Biomech. 2003 Oct;36(10):1409-24. doi: 10.1016/s0021-9290(03)00123-4.
7
Mechanical loading stimulates dentin matrix protein 1 (DMP1) expression in osteocytes in vivo.
J Bone Miner Res. 2003 May;18(5):807-17. doi: 10.1359/jbmr.2003.18.5.807.
9
Beyond the gap: functions of unpaired connexon channels.
Nat Rev Mol Cell Biol. 2003 Apr;4(4):285-94. doi: 10.1038/nrm1072.
10
Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia.
Am J Hum Genet. 2003 Feb;72(2):408-18. doi: 10.1086/346090. Epub 2002 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验