Sasaki Takuya, Kimura Rie, Tsukamoto Masako, Matsuki Norio, Ikegaya Yuji
Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan.
J Physiol. 2006 Jul 1;574(Pt 1):195-208. doi: 10.1113/jphysiol.2006.108480. Epub 2006 Apr 13.
The brain operates through a coordinated interplay of numerous neurons, yet little is known about the collective behaviour of individual neurons embedded in a huge network. We used large-scale optical recordings to address synaptic integration in hundreds of neurons. In hippocampal slice cultures bolus-loaded with Ca2+ fluorophores, we stimulated the Schaffer collaterals and monitored the aggregate presynaptic activity from the stratum radiatum and individual postsynaptic spikes from the CA1 stratum pyramidale. Single neurons responded to varying synaptic inputs with unreliable spikes, but at the population level, the networks stably output a linear sum of synaptic inputs. Nonetheless, the network activity, even though given constant stimuli, varied from trial to trial. This variation emerged through time-varying recruitment of different neuron subsets, which were shaped by correlated background noise. We also mapped the input-frequency preference in spiking activity and found that the majority of CA1 neurons fired in response to a limited range of presynaptic firing rates (20-40 Hz), acting like a band-pass filter, although a few neurons had high pass-like or low pass-like characteristics. This frequency selectivity depended on phasic inhibitory transmission. Thus, our imaging approach enables the linking of single-cell behaviours to their communal dynamics, and we discovered that, even in a relatively simple CA1 circuit, neurons could be engaged in concordant information processing.
大脑通过众多神经元的协同相互作用来运作,然而对于嵌入巨大网络中的单个神经元的集体行为却知之甚少。我们使用大规模光学记录来研究数百个神经元中的突触整合。在充满钙离子荧光团的海马切片培养物中,我们刺激了谢弗侧支,并监测了辐射层的总体突触前活动以及CA1锥体层的单个突触后尖峰。单个神经元对不同的突触输入以不可靠的尖峰做出反应,但在群体水平上,网络稳定地输出突触输入的线性总和。尽管如此,即使给予恒定刺激,网络活动在每次试验中仍会有所不同。这种变化通过不同神经元子集随时间变化的募集而出现,这些子集由相关的背景噪声塑造。我们还绘制了尖峰活动中的输入频率偏好,发现大多数CA1神经元在有限的突触前放电率范围(20 - 40赫兹)内放电,就像一个带通滤波器,尽管少数神经元具有高通或低通特性。这种频率选择性依赖于相位抑制性传递。因此,我们的成像方法能够将单细胞行为与其共同动态联系起来,并且我们发现,即使在相对简单的CAI回路中,神经元也可以参与一致的信息处理。