Suppr超能文献

具有生物物理和形态学细节神经元的大脑回路的大规模机制模型。

Large-Scale Mechanistic Models of Brain Circuits with Biophysically and Morphologically Detailed Neurons.

机构信息

State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, New York 11203

Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962.

出版信息

J Neurosci. 2024 Oct 2;44(40):e1236242024. doi: 10.1523/JNEUROSCI.1236-24.2024.

Abstract

Understanding the brain requires studying its multiscale interactions from molecules to networks. The increasing availability of large-scale datasets detailing brain circuit composition, connectivity, and activity is transforming neuroscience. However, integrating and interpreting this data remains challenging. Concurrently, advances in supercomputing and sophisticated modeling tools now enable the development of highly detailed, large-scale biophysical circuit models. These mechanistic multiscale models offer a method to systematically integrate experimental data, facilitating investigations into brain structure, function, and disease. This review, based on a Society for Neuroscience 2024 MiniSymposium, aims to disseminate recent advances in large-scale mechanistic modeling to the broader community. It highlights (1) examples of current models for various brain regions developed through experimental data integration; (2) their predictive capabilities regarding cellular and circuit mechanisms underlying experimental recordings (e.g., membrane voltage, spikes, local-field potential, electroencephalography/magnetoencephalography) and brain function; and (3) their use in simulating biomarkers for brain diseases like epilepsy, depression, schizophrenia, and Parkinson's, aiding in understanding their biophysical underpinnings and developing novel treatments. The review showcases state-of-the-art models covering hippocampus, somatosensory, visual, motor, auditory cortical, and thalamic circuits across species. These models predict neural activity at multiple scales and provide insights into the biophysical mechanisms underlying sensation, motor behavior, brain signals, neural coding, disease, pharmacological interventions, and neural stimulation. Collaboration with experimental neuroscientists and clinicians is essential for the development and validation of these models, particularly as datasets grow. Hence, this review aims to foster interest in detailed brain circuit models, leading to cross-disciplinary collaborations that accelerate brain research.

摘要

理解大脑需要研究从分子到网络的多层次相互作用。详细描述大脑回路组成、连接和活动的大规模数据集的日益普及正在改变神经科学。然而,整合和解释这些数据仍然具有挑战性。与此同时,超级计算和复杂建模工具的进步现在使开发高度详细的大规模生物物理电路模型成为可能。这些基于机制的多尺度模型为系统地整合实验数据提供了一种方法,有助于研究大脑结构、功能和疾病。本综述基于 2024 年神经科学学会小型研讨会,旨在向更广泛的科学界传播大规模机制建模的最新进展。它强调了(1)通过实验数据整合开发的各种大脑区域当前模型的示例;(2)它们在预测实验记录(例如膜电压、尖峰、局部场电位、脑电图/脑磁图)和大脑功能背后的细胞和电路机制方面的预测能力;(3)它们在模拟癫痫、抑郁、精神分裂症和帕金森病等脑疾病的生物标志物方面的用途,有助于理解其生物物理基础并开发新的治疗方法。该综述展示了涵盖海马体、感觉、视觉、运动、听觉皮层和丘脑回路的最先进模型,跨越了多个物种。这些模型可以预测多个尺度的神经活动,并深入了解感觉、运动行为、大脑信号、神经编码、疾病、药物干预和神经刺激背后的生物物理机制。与实验神经科学家和临床医生的合作对于这些模型的开发和验证至关重要,特别是随着数据集的增长。因此,本综述旨在激发对详细大脑回路模型的兴趣,促进跨学科合作,加速大脑研究。

相似文献

本文引用的文献

5
9
Full-scale scaffold model of the human hippocampus CA1 area.人类海马体 CA1 区的全尺度支架模型。
Nat Comput Sci. 2023 Mar;3(3):264-276. doi: 10.1038/s43588-023-00417-2. Epub 2023 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验