Suppr超能文献

用于将微流体与离子渗透膜连接以制造片上预浓缩器和电场梯度聚焦微芯片的相变牺牲材料。

Phase-changing sacrificial materials for interfacing microfluidics with ion-permeable membranes to create on-chip preconcentrators and electric field gradient focusing microchips.

作者信息

Kelly Ryan T, Li Yi, Woolley Adam T

机构信息

Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-5700, USA.

出版信息

Anal Chem. 2006 Apr 15;78(8):2565-70. doi: 10.1021/ac0521394.

Abstract

We have developed a novel approach for interfacing ionically conductive membranes with microfluidic systems using phase-changing sacrificial layers. Imprinted microchannels in a polymer substrate are filled with a heated liquid that solidifies at room temperature, a monomer solution is placed over the protected channels and polymerized to form a rigid semipermeable copolymer, and then the protective layer is melted and removed, leaving an open microchannel interfaced with a polymer membrane. We have applied this method in miniaturizing electric field gradient focusing (EFGF) and carrying out on-chip protein preconcentration. A semipermeable copolymer in the EFGF microchips fills a region of changing cross-sectional area, which allows a gradient in electric field to be established when an electrical potential is applied. Our technique provides microchip EFGF devices that offer 3-fold improved resolution in protein focusing compared with capillary-based systems. In addition, these EFGF microchips can separate peptide samples with resolution similar to what is obtained in capillary electrophoresis microdevices, and the micro-EFGF systems enrich analytes by a factor of >150. Finally, we have fabricated membrane-integrated microfluidic devices that can concentrate protein samples (R-phycoerythrin) over 10 000-fold to facilitate microchip capillary electrophoresis. Interfacing microchannels with ion-permeable membranes has great potential to enhance microchip analysis of biomolecules.

摘要

我们开发了一种新颖的方法,利用相变牺牲层将离子导电膜与微流体系统连接起来。在聚合物基板中印刻的微通道中填充一种在室温下会凝固的加热液体,在受保护的通道上方放置单体溶液并使其聚合形成刚性半透共聚物,然后将保护层熔化并去除,留下一个与聚合物膜相连的开放微通道。我们已将此方法应用于小型化电场梯度聚焦(EFGF)并进行芯片上的蛋白质预浓缩。EFGF微芯片中的半透共聚物填充了一个横截面积不断变化的区域,当施加电势时,这使得能够建立电场梯度。我们的技术提供了微芯片EFGF装置,与基于毛细管的系统相比,其在蛋白质聚焦方面的分辨率提高了3倍。此外,这些EFGF微芯片能够以与毛细管电泳微器件中类似的分辨率分离肽样品,并且微EFGF系统将分析物富集了150倍以上。最后,我们制造了膜集成微流体装置,该装置能够将蛋白质样品(藻红蛋白)浓缩10000倍以上,以促进微芯片毛细管电泳。将微通道与离子渗透膜连接起来在增强生物分子的微芯片分析方面具有巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验