Suppr超能文献

Method for the determination of inorganic polysulfide distribution in aquatic systems.

作者信息

Kamyshny Alexey, Ekeltchik Irina, Gun Jenny, Lev Ovadia

机构信息

Laboratory of Environmental Chemistry, Casali Institute of Applied Chemistry, Chemistry Institute, Hebrew University of Jerusalem, Jerusalem 91904, Israel.

出版信息

Anal Chem. 2006 Apr 15;78(8):2631-9. doi: 10.1021/ac051854a.

Abstract

Inorganic polysulfides have significant technological importance, and their environmental role is gradually being unraveled. But despite their importance, there is still no method for quantification of the individual members of the polysulfide family in nonsynthetic samples. The method is based on fast, single-phase derivatization with methyl trifluoromethanesulfonate followed by one of three modes of sample treatment depending on polysulfide concentration. Under the most aggressive preconcentration treatment involving liquid-liquid extraction, solvent evaporation to dryness, dissolution in n-dodecane, and finally HPLC-UV analysis of the dimethylpolysulfane distribution, the minimum detection limits of the individual polysulfides are in the range 15-70 nM. The method was demonstrated for the analysis of synthetic solutions, natural groundwater, polysulfide fortified seawater, and surface water and for time tracing of the distribution of the individual polysulfides during the oxidation of hydrogen sulfide by hydrogen peroxide. The observed speciation was evaluated by comparison with the theoretical distribution of polysulfides at equilibrium with sulfur precipitate showing that the dominant polysulfides' (i.e., tetra- to hexasulfide) concentrations agree well with the predicted distribution (90% of the results fall within less than 30% deviation from the predicted values), whereas up to 3-fold deviation was observed for the less abundant trisulfide and octasulfide species.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验