Suppr超能文献

硫物种作为德氏硫螺旋菌还原水铁矿的氧化还原伙伴和电子穿梭体。

Sulfur species as redox partners and electron shuttles for ferrihydrite reduction by Sulfurospirillum deleyianum.

作者信息

Lohmayer Regina, Kappler Andreas, Lösekann-Behrens Tina, Planer-Friedrich Britta

机构信息

Environmental Geochemistry Group, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany.

出版信息

Appl Environ Microbiol. 2014 May;80(10):3141-9. doi: 10.1128/AEM.04220-13. Epub 2014 Mar 14.

Abstract

Iron(III) (oxyhydr)oxides can represent the dominant microbial electron acceptors under anoxic conditions in many aquatic environments, which makes understanding the mechanisms and processes regulating their dissolution and transformation particularly important. In a previous laboratory-based study, it has been shown that 0.05 mM thiosulfate can reduce 6 mM ferrihydrite indirectly via enzymatic reduction of thiosulfate to sulfide by the sulfur-reducing bacterium Sulfurospirillum deleyianum, followed by abiotic reduction of ferrihydrite coupled to reoxidation of sulfide. Thiosulfate, elemental sulfur, and polysulfides were proposed as reoxidized sulfur species functioning as electron shuttles. However, the exact electron transfer pathway remained unknown. Here, we present a detailed analysis of the sulfur species involved. Apart from thiosulfate, substoichiometric amounts of sulfite, tetrathionate, sulfide, or polysulfides also initiated ferrihydrite reduction. The portion of thiosulfate produced during abiotic ferrihydrite-dependent reoxidation of sulfide was about 10% of the total sulfur at maximum. The main abiotic oxidation product was elemental sulfur attached to the iron mineral surface, which indicates that direct contact between microorganisms and ferrihydrite is necessary to maintain the iron reduction process. Polysulfides were not detected in the liquid phase. Minor amounts were found associated either with microorganisms or the mineral phase. The abiotic oxidation of sulfide in the reaction with ferrihydrite was identified as rate determining. Cysteine, added as a sulfur source and a reducing agent, also led to abiotic ferrihydrite reduction and therefore should be eliminated when sulfur redox reactions are investigated. Overall, we could demonstrate the large impact of intermediate sulfur species on biogeochemical iron transformations.

摘要

在许多水生环境的缺氧条件下,铁(III)(氢)氧化物可能是主要的微生物电子受体,这使得了解调节其溶解和转化的机制及过程尤为重要。在之前基于实验室的研究中,已表明0.05 mM硫代硫酸盐可通过硫还原细菌德莱氏硫螺旋菌将硫代硫酸盐酶促还原为硫化物,进而间接还原6 mM水铁矿,随后水铁矿的非生物还原与硫化物的再氧化偶联。硫代硫酸盐、元素硫和多硫化物被认为是作为电子穿梭体的再氧化硫物种。然而,确切的电子转移途径仍不清楚。在此,我们对所涉及的硫物种进行了详细分析。除硫代硫酸盐外,亚化学计量的亚硫酸盐、连四硫酸盐、硫化物或多硫化物也引发了水铁矿的还原。在硫化物依赖水铁矿的非生物再氧化过程中产生的硫代硫酸盐部分最多约占总硫的10%。主要的非生物氧化产物是附着在铁矿物表面的元素硫,这表明微生物与水铁矿之间的直接接触对于维持铁还原过程是必要的。在液相中未检测到多硫化物。少量多硫化物被发现与微生物或矿物相有关。硫化物与水铁矿反应中的非生物氧化被确定为速率决定步骤。作为硫源和还原剂添加的半胱氨酸也导致了水铁矿的非生物还原,因此在研究硫氧化还原反应时应予以排除。总体而言,我们能够证明中间硫物种对生物地球化学铁转化的重大影响。

相似文献

3
Sulfur-Driven Iron Reduction Coupled to Anaerobic Ammonium Oxidation.硫驱动的铁还原与厌氧氨氧化耦合。
Environ Sci Technol. 2017 Jun 20;51(12):6691-6698. doi: 10.1021/acs.est.6b05971. Epub 2017 Jun 12.

引用本文的文献

2
An evolving view on biogeochemical cycling of iron.铁的生物地球化学循环的演变观点。
Nat Rev Microbiol. 2021 Jun;19(6):360-374. doi: 10.1038/s41579-020-00502-7. Epub 2021 Feb 1.

本文引用的文献

8
Removal of heavy metal ions by iron oxide coated sewage sludge.用氧化铁包覆的污水污泥去除重金属离子。
J Hazard Mater. 2011 Feb 15;186(1):502-7. doi: 10.1016/j.jhazmat.2010.11.065. Epub 2010 Nov 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验