Suppr超能文献

用于信号转导网络拓扑分析和靶向破坏的计算框架。

A computational framework for the topological analysis and targeted disruption of signal transduction networks.

作者信息

Dasika Madhukar S, Burgard Anthony, Maranas Costas D

机构信息

Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.

出版信息

Biophys J. 2006 Jul 1;91(1):382-98. doi: 10.1529/biophysj.105.069724. Epub 2006 Apr 14.

Abstract

In this article, optimization-based frameworks are introduced for elucidating the input-output structure of signaling networks and for pinpointing targeted disruptions leading to the silencing of undesirable outputs in therapeutic interventions. The frameworks are demonstrated on a large-scale reconstruction of a signaling network composed of nine signaling pathways implicated in prostate cancer. The Min-Input framework is used to exhaustively identify all input-output connections implied by the signaling network structure. Results reveal that there exist two distinct types of outputs in the signaling network that either can be elicited by many different input combinations or are highly specific requiring dedicated inputs. The Min-Interference framework is next used to precisely pinpoint key disruptions that negate undesirable outputs while leaving unaffected necessary ones. In addition to identifying disruptions of terminal steps, we also identify complex disruption combinations in upstream pathways that indirectly negate the targeted output by propagating their action through the signaling cascades. By comparing the obtained disruption targets with lists of drug molecules we find that many of these targets can be acted upon by existing drug compounds, whereas the remaining ones point at so-far unexplored targets. Overall the proposed computational frameworks can help elucidate input/output relationships of signaling networks and help to guide the systematic design of interference strategies.

摘要

在本文中,引入了基于优化的框架,用于阐明信号网络的输入-输出结构,并精确确定在治疗干预中导致不良输出沉默的靶向干扰。这些框架在一个由涉及前列腺癌的九条信号通路组成的信号网络的大规模重建上得到了验证。最小输入框架用于详尽识别信号网络结构所隐含的所有输入-输出连接。结果表明,信号网络中存在两种不同类型的输出,一种可以由许多不同的输入组合引发,另一种则高度特异,需要特定的输入。接下来,最小干扰框架用于精确确定关键干扰,这些干扰可消除不良输出,同时不影响必要的输出。除了识别终端步骤的干扰外,我们还识别上游通路中的复杂干扰组合,这些组合通过信号级联传播其作用,间接消除靶向输出。通过将获得的干扰靶点与药物分子列表进行比较,我们发现这些靶点中的许多可以被现有药物化合物作用,而其余的则指向尚未探索的靶点。总体而言,所提出的计算框架有助于阐明信号网络的输入/输出关系,并有助于指导干扰策略的系统设计。

相似文献

1
A computational framework for the topological analysis and targeted disruption of signal transduction networks.
Biophys J. 2006 Jul 1;91(1):382-98. doi: 10.1529/biophysj.105.069724. Epub 2006 Apr 14.
4
An empirical Bayes approach to inferring large-scale gene association networks.
Bioinformatics. 2005 Mar;21(6):754-64. doi: 10.1093/bioinformatics/bti062. Epub 2004 Oct 12.
5
Discovering distinct functional modules of specific cancer types using protein-protein interaction networks.
Biomed Res Int. 2015;2015:146365. doi: 10.1155/2015/146365. Epub 2015 Sep 30.
7
Introduction: Cancer Gene Networks.
Methods Mol Biol. 2017;1513:1-9. doi: 10.1007/978-1-4939-6539-7_1.
8
Reconstruction and signal propagation analysis of the Syk signaling network in breast cancer cells.
PLoS Comput Biol. 2017 Mar 17;13(3):e1005432. doi: 10.1371/journal.pcbi.1005432. eCollection 2017 Mar.
9
10
Intervention in context-sensitive probabilistic Boolean networks.
Bioinformatics. 2005 Apr 1;21(7):1211-8. doi: 10.1093/bioinformatics/bti131. Epub 2004 Nov 5.

引用本文的文献

2
MUFINS: multi-formalism interaction network simulator.
NPJ Syst Biol Appl. 2016 Nov 17;2:16032. doi: 10.1038/npjsba.2016.32. eCollection 2016.
3
EGFR Signal-Network Reconstruction Demonstrates Metabolic Crosstalk in EMT.
PLoS Comput Biol. 2016 Jun 2;12(6):e1004924. doi: 10.1371/journal.pcbi.1004924. eCollection 2016 Jun.
4
Diverse array-designed modes of combination therapies in Fangjiomics.
Acta Pharmacol Sin. 2015 Jun;36(6):680-8. doi: 10.1038/aps.2014.125. Epub 2015 Apr 13.
5
Extracting reaction networks from databases-opening Pandora's box.
Brief Bioinform. 2014 Nov;15(6):973-83. doi: 10.1093/bib/bbt058. Epub 2013 Aug 14.
6
A flood-based information flow analysis and network minimization method for gene regulatory networks.
BMC Bioinformatics. 2013 Apr 24;14:137. doi: 10.1186/1471-2105-14-137.
7
Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review.
Pharmacol Ther. 2013 Jun;138(3):333-408. doi: 10.1016/j.pharmthera.2013.01.016. Epub 2013 Feb 4.
8
Contextualization procedure and modeling of monocyte specific TLR signaling.
PLoS One. 2012;7(12):e49978. doi: 10.1371/journal.pone.0049978. Epub 2012 Dec 6.
9
PATHLOGIC-S: a scalable Boolean framework for modelling cellular signalling.
PLoS One. 2012;7(8):e41977. doi: 10.1371/journal.pone.0041977. Epub 2012 Aug 7.
10
Controlling the outcome of the Toll-like receptor signaling pathways.
PLoS One. 2012;7(2):e31341. doi: 10.1371/journal.pone.0031341. Epub 2012 Feb 20.

本文引用的文献

1
Integrative analysis of the cancer transcriptome.
Nat Genet. 2005 Jun;37 Suppl:S31-7. doi: 10.1038/ng1570.
2
Biological networks and analysis of experimental data in drug discovery.
Drug Discov Today. 2005 May 1;10(9):653-62. doi: 10.1016/S1359-6446(05)03420-3.
3
RKIP downregulates B-Raf kinase activity in melanoma cancer cells.
Oncogene. 2005 May 12;24(21):3535-40. doi: 10.1038/sj.onc.1208435.
4
An integrated approach for inference and mechanistic modeling for advancing drug development.
FEBS Lett. 2005 Mar 21;579(8):1878-83. doi: 10.1016/j.febslet.2005.02.012.
5
Illuminating drug discovery with biological pathways.
FEBS Lett. 2005 Mar 21;579(8):1872-7. doi: 10.1016/j.febslet.2005.02.023.
6
Space in systems biology of signaling pathways--towards intracellular molecular crowding in silico.
FEBS Lett. 2005 Mar 21;579(8):1783-8. doi: 10.1016/j.febslet.2005.01.072.
7
Reconstruction of cellular signalling networks and analysis of their properties.
Nat Rev Mol Cell Biol. 2005 Feb;6(2):99-111. doi: 10.1038/nrm1570.
9
The PANTHER database of protein families, subfamilies, functions and pathways.
Nucleic Acids Res. 2005 Jan 1;33(Database issue):D284-8. doi: 10.1093/nar/gki078.
10
Common and distinct elements in cellular signaling via EGF and FGF receptors.
Science. 2004 Nov 26;306(5701):1506-7. doi: 10.1126/science.1105396.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验