文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

白花丹醌在人前列腺癌PC-3和DU145细胞中引发差异蛋白质组学反应,主要涉及细胞周期、细胞凋亡、自噬以及上皮-间质转化途径。

Plumbagin elicits differential proteomic responses mainly involving cell cycle, apoptosis, autophagy, and epithelial-to-mesenchymal transition pathways in human prostate cancer PC-3 and DU145 cells.

作者信息

Qiu Jia-Xuan, Zhou Zhi-Wei, He Zhi-Xu, Zhao Ruan Jin, Zhang Xueji, Yang Lun, Zhou Shu-Feng, Mao Zong-Fu

机构信息

School of Public Health, Wuhan University, Wuhan, Hubei, People's Republic of China ; Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China.

Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China.

出版信息

Drug Des Devel Ther. 2015 Jan 7;9:349-417. doi: 10.2147/DDDT.S71677. eCollection 2015.


DOI:10.2147/DDDT.S71677
PMID:25609920
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4294653/
Abstract

Plumbagin (PLB) has exhibited a potent anticancer effect in preclinical studies, but the molecular interactome remains elusive. This study aimed to compare the quantitative proteomic responses to PLB treatment in human prostate cancer PC-3 and DU145 cells using the approach of stable-isotope labeling by amino acids in cell culture (SILAC). The data were finally validated using Western blot assay. First, the bioinformatic analysis predicted that PLB could interact with 78 proteins that were involved in cell proliferation and apoptosis, immunity, and signal transduction. Our quantitative proteomic study using SILAC revealed that there were at least 1,225 and 267 proteins interacting with PLB and there were 341 and 107 signaling pathways and cellular functions potentially regulated by PLB in PC-3 and DU145 cells, respectively. These proteins and pathways played a critical role in the regulation of cell cycle, apoptosis, autophagy, epithelial to mesenchymal transition (EMT), and reactive oxygen species generation. The proteomic study showed substantial differences in response to PLB treatment between PC-3 and DU145 cells. PLB treatment significantly modulated the expression of critical proteins that regulate cell cycle, apoptosis, and EMT signaling pathways in PC-3 cells but not in DU145 cells. Consistently, our Western blotting analysis validated the bioinformatic and proteomic data and confirmed the modulating effects of PLB on important proteins that regulated cell cycle, apoptosis, autophagy, and EMT in PC-3 and DU145 cells. The data from the Western blot assay could not display significant differences between PC-3 and DU145 cells. These findings indicate that PLB elicits different proteomic responses in PC-3 and DU145 cells involving proteins and pathways that regulate cell cycle, apoptosis, autophagy, reactive oxygen species production, and antioxidation/oxidation homeostasis. This is the first systematic study with integrated computational, proteomic, and functional analyses revealing the networks of signaling pathways and differential proteomic responses to PLB treatment in prostate cancer cells. Quantitative proteomic analysis using SILAC represents an efficient and highly sensitive approach to identify the target networks of anticancer drugs like PLB, and the data may be used to discriminate the molecular and clinical subtypes, and to identify new therapeutic targets and biomarkers, for prostate cancer. Further studies are warranted to explore the potential of quantitative proteomic analysis in the identification of new targets and biomarkers for prostate cancer.

摘要

白花丹素(PLB)在临床前研究中已显示出强大的抗癌作用,但其分子相互作用组仍不清楚。本研究旨在使用细胞培养中氨基酸稳定同位素标记(SILAC)方法,比较人前列腺癌PC-3和DU145细胞对PLB治疗的定量蛋白质组学反应。最终通过蛋白质印迹分析对数据进行验证。首先,生物信息学分析预测PLB可与78种参与细胞增殖和凋亡、免疫及信号转导的蛋白质相互作用。我们使用SILAC进行的定量蛋白质组学研究表明,在PC-3和DU145细胞中,分别至少有1225种和267种蛋白质与PLB相互作用,且分别有341条和107条信号通路及细胞功能可能受PLB调控。这些蛋白质和通路在细胞周期、凋亡、自噬、上皮-间质转化(EMT)及活性氧生成的调控中起关键作用。蛋白质组学研究显示PC-3和DU145细胞对PLB治疗的反应存在显著差异。PLB处理显著调节了PC-3细胞中调控细胞周期、凋亡及EMT信号通路的关键蛋白表达,但在DU145细胞中未出现这种情况。同样,我们的蛋白质印迹分析验证了生物信息学和蛋白质组学数据,并证实了PLB对PC-3和DU145细胞中调控细胞周期、凋亡、自噬及EMT的重要蛋白的调节作用。蛋白质印迹分析的数据未显示PC-3和DU145细胞之间存在显著差异。这些发现表明,PLB在PC-3和DU145细胞中引发了不同的蛋白质组学反应,涉及调控细胞周期、凋亡、自噬、活性氧产生及抗氧化/氧化稳态的蛋白质和通路。这是第一项结合计算、蛋白质组学和功能分析的系统性研究,揭示了前列腺癌细胞中信号通路网络及对PLB治疗的差异蛋白质组学反应。使用SILAC进行的定量蛋白质组学分析是一种有效且高度灵敏的方法,可用于识别像PLB这样的抗癌药物的靶标网络,这些数据可用于区分前列腺癌的分子和临床亚型,并识别新的治疗靶点和生物标志物。有必要进一步研究探索定量蛋白质组学分析在识别前列腺癌新靶点和生物标志物方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/be1104aa78dc/dddt-9-349Fig27.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/d98a6e677934/dddt-9-349Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/52567920019a/dddt-9-349Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/500f1500be74/dddt-9-349Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/2ff740f43a32/dddt-9-349Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/57916d253ec0/dddt-9-349Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/8faf77abe08b/dddt-9-349Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/5e9cbdc45504/dddt-9-349Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/4ff1feab5554/dddt-9-349Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/98ac6830c3f0/dddt-9-349Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/47ec29214c42/dddt-9-349Fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/f618302230cd/dddt-9-349Fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/83acab82383c/dddt-9-349Fig12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/bc15ffc93f0c/dddt-9-349Fig13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/190f42fc50af/dddt-9-349Fig14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/13b065750bcf/dddt-9-349Fig15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/1f4b6a2eb5f5/dddt-9-349Fig16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/ccfb49081d53/dddt-9-349Fig17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/0bdc8bdd3121/dddt-9-349Fig18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/54248326ef27/dddt-9-349Fig19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/200d8b31e9db/dddt-9-349Fig20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/8944a18eeeec/dddt-9-349Fig21.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/5051908e169d/dddt-9-349Fig22.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/f85b6dced694/dddt-9-349Fig23.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/443f639d524a/dddt-9-349Fig24.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/99087b39655a/dddt-9-349Fig25.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/ecbcb8e026d3/dddt-9-349Fig26.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/be1104aa78dc/dddt-9-349Fig27.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/d98a6e677934/dddt-9-349Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/52567920019a/dddt-9-349Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/500f1500be74/dddt-9-349Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/2ff740f43a32/dddt-9-349Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/57916d253ec0/dddt-9-349Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/8faf77abe08b/dddt-9-349Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/5e9cbdc45504/dddt-9-349Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/4ff1feab5554/dddt-9-349Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/98ac6830c3f0/dddt-9-349Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/47ec29214c42/dddt-9-349Fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/f618302230cd/dddt-9-349Fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/83acab82383c/dddt-9-349Fig12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/bc15ffc93f0c/dddt-9-349Fig13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/190f42fc50af/dddt-9-349Fig14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/13b065750bcf/dddt-9-349Fig15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/1f4b6a2eb5f5/dddt-9-349Fig16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/ccfb49081d53/dddt-9-349Fig17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/0bdc8bdd3121/dddt-9-349Fig18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/54248326ef27/dddt-9-349Fig19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/200d8b31e9db/dddt-9-349Fig20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/8944a18eeeec/dddt-9-349Fig21.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/5051908e169d/dddt-9-349Fig22.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/f85b6dced694/dddt-9-349Fig23.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/443f639d524a/dddt-9-349Fig24.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/99087b39655a/dddt-9-349Fig25.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/ecbcb8e026d3/dddt-9-349Fig26.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a69/4294653/be1104aa78dc/dddt-9-349Fig27.jpg

相似文献

[1]
Plumbagin elicits differential proteomic responses mainly involving cell cycle, apoptosis, autophagy, and epithelial-to-mesenchymal transition pathways in human prostate cancer PC-3 and DU145 cells.

Drug Des Devel Ther. 2015-1-7

[2]
Plumbagin induces cell cycle arrest and autophagy and suppresses epithelial to mesenchymal transition involving PI3K/Akt/mTOR-mediated pathway in human pancreatic cancer cells.

Drug Des Devel Ther. 2015-1-17

[3]
Induction of apoptosis and autophagy via sirtuin1- and PI3K/Akt/mTOR-mediated pathways by plumbagin in human prostate cancer cells.

Drug Des Devel Ther. 2015-3-12

[4]
Plumbagin suppresses epithelial to mesenchymal transition and stemness via inhibiting Nrf2-mediated signaling pathway in human tongue squamous cell carcinoma cells.

Drug Des Devel Ther. 2015-10-5

[5]
Plumbagin induces G2/M arrest, apoptosis, and autophagy via p38 MAPK- and PI3K/Akt/mTOR-mediated pathways in human tongue squamous cell carcinoma cells.

Drug Des Devel Ther. 2015-3-16

[6]
Alisertib, an Aurora kinase A inhibitor, induces apoptosis and autophagy but inhibits epithelial to mesenchymal transition in human epithelial ovarian cancer cells.

Drug Des Devel Ther. 2015-1-9

[7]
Proteomic response to 5,6-dimethylxanthenone 4-acetic acid (DMXAA, vadimezan) in human non-small cell lung cancer A549 cells determined by the stable-isotope labeling by amino acids in cell culture (SILAC) approach.

Drug Des Devel Ther. 2015-2-17

[8]
A SILAC-Based Approach Elicits the Proteomic Responses to Vancomycin-Associated Nephrotoxicity in Human Proximal Tubule Epithelial HK-2 Cells.

Molecules. 2016-1-29

[9]
Plumbagin Triggers ER Stress-Mediated Apoptosis in Prostate Cancer Cells via Induction of ROS.

Cell Physiol Biochem. 2018

[10]
CX3CL1 increases invasiveness and metastasis by promoting epithelial-to-mesenchymal transition through the TACE/TGF-α/EGFR pathway in hypoxic androgen-independent prostate cancer cells.

Oncol Rep. 2016-2

引用本文的文献

[1]
Different Derivatives of Plumbagin Analogue: Bioavailability and Their Toxicity Studies.

Food Sci Nutr. 2025-8-19

[2]
Deciphering Cancer Complexity: Integrative Proteogenomics and Proteomics Approaches for Biomarker Discovery.

Methods Mol Biol. 2025

[3]
Expression Signatures of Long Noncoding RNAs in Left Ventricular Noncompaction.

Front Cardiovasc Med. 2021-11-10

[4]
Anticancer Effects and Mechanisms of Action of Plumbagin: Review of Research Advances.

Biomed Res Int. 2020

[5]
Reversal of Epithelial-Mesenchymal Transition by Natural Anti-Inflammatory and Pro-Resolving Lipids.

Cancers (Basel). 2019-11-21

[6]
A quantitative proteomic response of hepatocellular carcinoma Hep3B cells to danusertib, a pan-Aurora kinase inhibitor.

J Cancer. 2018-5-24

[7]
Differential gene expression induced by anti-cancer agent plumbagin is mediated by androgen receptor in prostate cancer cells.

Sci Rep. 2018-2-9

[8]
A proteomics-based investigation on the anticancer activity of alisertib, an Aurora kinase A inhibitor, in hepatocellular carcinoma Hep3B cells.

Am J Transl Res. 2017-8-15

[9]
Alisertib induces G/M arrest, apoptosis, and autophagy via PI3K/Akt/mTOR- and p38 MAPK-mediated pathways in human glioblastoma cells.

Am J Transl Res. 2017-3-15

[10]
DPDR-CPI, a server that predicts Drug Positioning and Drug Repositioning via Chemical-Protein Interactome.

Sci Rep. 2016-11-2

本文引用的文献

[1]
Molecular and chemical regulation of the Keap1-Nrf2 signaling pathway.

Molecules. 2014-7-10

[2]
Cancer treatment and survivorship statistics, 2014.

CA Cancer J Clin. 2014-6-1

[3]
Prostate cancer relevant antigens and enzymes for targeted drug delivery.

J Control Release. 2014-8-10

[4]
Genomic, pathological, and clinical heterogeneity as drivers of personalized medicine in prostate cancer.

Urol Oncol. 2015-2

[5]
The epidemiology and clinical implications of genetic variation in prostate cancer.

Urol Clin North Am. 2014-2-28

[6]
New biomarkers in prostate cancer.

Oncology (Williston Park). 2014-2

[7]
Molecular mechanisms of epithelial-mesenchymal transition.

Nat Rev Mol Cell Biol. 2014-3

[8]
Free radicals in cross talk between autophagy and apoptosis.

Antioxid Redox Signal. 2014-2-14

[9]
Plumbagin induces apoptotic and autophagic cell death through inhibition of the PI3K/Akt/mTOR pathway in human non-small cell lung cancer cells.

Cancer Lett. 2013-11-23

[10]
N-linked glycosylation enrichment for in-depth cell surface proteomics of diffuse large B-cell lymphoma subtypes.

Mol Cell Proteomics. 2013-11-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索