Hamamoto Hiromi, Kusudo Tatsuya, Urushino Naoko, Masuno Hiroyuki, Yamamoto Keiko, Yamada Sachiko, Kamakura Masaki, Ohta Miho, Inouye Kuniyo, Sakaki Toshiyuki
Biotechnology Research Center, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
Mol Pharmacol. 2006 Jul;70(1):120-8. doi: 10.1124/mol.106.023275. Epub 2006 Apr 14.
Our previous studies revealed the species-based difference of CYP24A1-dependent vitamin D metabolism. Although human CYP24A1 catalyzes both C-23 and C-24 oxidation pathways, rat CYP24A1 shows almost no C-23 oxidation pathway. We tried to identify amino acid residues that cause the species-based difference by site-directed mutagenesis. In the putative substrate-binding regions, amino acid residue of rat CYP24A1 was converted to the corresponding residue of human CYP24A1. Among eight mutants examined, T416M and I500T showed C-23 oxidation pathway. In addition, the mutant I500F showed quite a different metabolism of 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] from both human and rat CYP24A1. These results strongly suggest that the amino acid residues at positions 416 and 500 play a crucial role in substrate binding and greatly affect substrate orientation. A three-dimensional model of CYP24A1 indicated that the A-ring and triene part of 1alpha,25(OH)2D3 could be located close to amino acid residues at positions 416 and 500, respectively. Our findings provide useful information for the development of new vitamin D analogs for clinical use.
我们之前的研究揭示了基于物种的CYP24A1依赖性维生素D代谢差异。尽管人CYP24A1催化C-23和C-24氧化途径,但大鼠CYP24A1几乎没有C-23氧化途径。我们试图通过定点诱变来鉴定导致基于物种差异的氨基酸残基。在假定的底物结合区域,将大鼠CYP24A1的氨基酸残基转换为人CYP24A1的相应残基。在检测的八个突变体中,T416M和I500T显示出C-23氧化途径。此外,突变体I500F显示出与人和大鼠CYP24A1均截然不同的1α,25-二羟基维生素D3 [1α,25(OH)2D3]代谢。这些结果有力地表明,416位和500位的氨基酸残基在底物结合中起关键作用,并极大地影响底物取向。CYP24A1的三维模型表明,1α,25(OH)2D3的A环和三烯部分可能分别靠近416位和500位的氨基酸残基。我们的发现为开发用于临床的新型维生素D类似物提供了有用的信息。