Department of Biochemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6.
Department of Biochemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6; Department of Medicine, Queen's University, Kingston, Ontario, Canada K7L 3N6.
J Biol Chem. 2011 Aug 19;286(33):28729-28737. doi: 10.1074/jbc.M111.236679. Epub 2011 Jun 22.
CYP24A1 is a mitochondrial cytochrome P450 (CYP) that catabolizes 1α,25-dihydroxyvitamin D(3) (1α,25-(OH)(2)D(3)) to different products: calcitroic acid or 1α,25-(OH)(2)D(3)-26,23-lactone via multistep pathways commencing with C24 and C23 hydroxylation, respectively. Despite the ability of CYP24A1 to catabolize a wide range of 25-hydroxylated analogs including 25-hydroxyvitamin D(3), the enzyme is unable to metabolize the synthetic prodrug, 1α-hydroxyvitamin D(3) (1α-OH-D(3)), presumably because it lacks a C25-hydroxyl. In the current study we show that a single V391L amino acid substitution in the β3a-strand of human CYP24A1 converts this enzyme from a catabolic 1α,25-(OH)(2)D(3)-24-hydroxylase into an anabolic 1α-OH-D(3)-25-hydroxylase, thereby forming the hormone, 1α,25-(OH)(2)D(3). Furthermore, because the mutant enzyme retains its basal ability to catabolize 1α,25-(OH)(2)D(3) via C24 hydroxylation, it can also make calcitroic acid. Previous work has shown that an A326G mutation is responsible for the regioselectivity differences observed between human (primarily C24-hydroxylating) and opossum (C23-hydroxylating) CYP24A1. When the V391L and A326G mutations were combined (V391L/A326G), the mutant enzyme continued to form 1α,25-(OH)(2)D(3) from 1α-OH-D(3), but this initial product was diverted via the C23 hydroxylation pathway into the 26,23-lactone. The relative position of Val-391 in the β3a-strand of a homology model and the crystal structure of rat CYP24A1 is consistent with hydrophobic contact of Val-391 and the substrate side chain near C21. We interpret that the substrate specificity of V391L-modified human CYP24A1 toward 1α-OH-D(3) is enabled by an altered contact with the substrate side chain that optimally positions C25 of the 1α-OH-D(3) above the heme for hydroxylation.
CYP24A1 是一种线粒体细胞色素 P450(CYP),可将 1α,25-二羟维生素 D(3)(1α,25-(OH)(2)D(3))代谢为不同的产物:降钙素酸或 1α,25-(OH)(2)D(3)-26,23-内酯,分别通过以 C24 和 C23 羟化为起始的多步途径。尽管 CYP24A1 能够代谢广泛的 25-羟化类似物,包括 25-羟维生素 D(3),但该酶无法代谢合成前药 1α-羟基维生素 D(3)(1α-OH-D(3)),大概是因为它缺乏 C25-羟化酶。在本研究中,我们表明,人 CYP24A1 的 β3a-链中的单个 V391L 氨基酸取代将该酶从代谢 1α,25-(OH)(2)D(3)-24-羟化酶转变为合成 1α-OH-D(3)-25-羟化酶,从而形成激素 1α,25-(OH)(2)D(3)。此外,由于突变酶保留了其通过 C24 羟化作用代谢 1α,25-(OH)(2)D(3)的基本能力,因此它也可以形成降钙素酸。先前的工作表明,A326G 突变负责观察到人(主要为 C24-羟化)和负鼠(C23-羟化)CYP24A1 之间的区域选择性差异。当 V391L 和 A326G 突变组合(V391L/A326G)时,突变酶继续从 1α-OH-D(3)形成 1α,25-(OH)(2)D(3),但该初始产物通过 C23 羟化途径转化为 26,23-内酯。同源模型和大鼠 CYP24A1 晶体结构中β3a-链中 Val-391 的相对位置与 Val-391 与靠近 C21 的底物侧链的疏水性接触一致。我们解释说,V391L 修饰的人 CYP24A1 对 1α-OH-D(3)的底物特异性是通过与底物侧链的改变接触实现的,该接触使 1α-OH-D(3)的 C25 最佳定位于血红素上方进行羟化。