Suppr超能文献

氨酰-tRNA合成酶活性位点的结构可塑性。

Structural plasticity of an aminoacyl-tRNA synthetase active site.

作者信息

Turner James M, Graziano James, Spraggon Glen, Schultz Peter G

机构信息

Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.

出版信息

Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6483-8. doi: 10.1073/pnas.0601756103. Epub 2006 Apr 17.

Abstract

Recently, tRNA aminoacyl-tRNA synthetase pairs have been evolved that allow one to genetically encode a large array of unnatural amino acids in both prokaryotic and eukaryotic organisms. We have determined the crystal structures of two substrate-bound Methanococcus jannaschii tyrosyl aminoacyl-tRNA synthetases that charge the unnatural amino acids p-bromophenylalanine and 3-(2-naphthyl)alanine (NpAla). A comparison of these structures with the substrate-bound WT synthetase, as well as a mutant synthetase that charges p-acetylphenylalanine, shows that altered specificity is due to both side-chain and backbone rearrangements within the active site that modify hydrogen bonds and packing interactions with substrate, as well as disrupt the alpha8-helix, which spans the WT active site. The high degree of structural plasticity that is observed in these aminoacyl-tRNA synthetases is rarely found in other mutant enzymes with altered specificities and provides an explanation for the surprising adaptability of the genetic code to novel amino acids.

摘要

最近,已经进化出了tRNA氨基酰-tRNA合成酶对,使得人们能够在原核生物和真核生物中对大量非天然氨基酸进行遗传编码。我们已经确定了两种与底物结合的詹氏甲烷球菌酪氨酰氨基酰-tRNA合成酶的晶体结构,它们负责将非天然氨基酸对溴苯丙氨酸和3-(2-萘基)丙氨酸(NpAla)进行氨酰化。将这些结构与与底物结合的野生型合成酶以及负责对对乙酰基苯丙氨酸进行氨酰化的突变型合成酶进行比较,结果表明,特异性的改变是由于活性位点内的侧链和主链重排所致,这些重排改变了与底物的氢键和堆积相互作用,同时破坏了跨越野生型活性位点的α8螺旋。在这些氨基酰-tRNA合成酶中观察到的高度结构可塑性在其他特异性改变的突变酶中很少见,这为遗传密码对新氨基酸的惊人适应性提供了解释。

相似文献

1
Structural plasticity of an aminoacyl-tRNA synthetase active site.
Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6483-8. doi: 10.1073/pnas.0601756103. Epub 2006 Apr 17.
2
Rational design of aminoacyl-tRNA synthetase specific for p-acetyl-L-phenylalanine.
Biochem Biophys Res Commun. 2010 Jan 1;391(1):709-15. doi: 10.1016/j.bbrc.2009.11.125. Epub 2009 Nov 26.
3
Structural characterization of a p-acetylphenylalanyl aminoacyl-tRNA synthetase.
J Am Chem Soc. 2005 Nov 2;127(43):14976-7. doi: 10.1021/ja0549042.
6
Structural basis of nonnatural amino acid recognition by an engineered aminoacyl-tRNA synthetase for genetic code expansion.
Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1366-71. doi: 10.1073/pnas.0407039102. Epub 2005 Jan 25.
7
Structure-based design of mutant Methanococcus jannaschii tyrosyl-tRNA synthetase for incorporation of O-methyl-L-tyrosine.
Proc Natl Acad Sci U S A. 2002 May 14;99(10):6579-84. doi: 10.1073/pnas.052150499.
8
Domain-domain communication in a miniature archaebacterial tRNA synthetase.
Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13644-9. doi: 10.1073/pnas.96.24.13644.
9
One plasmid selection system for the rapid evolution of aminoacyl-tRNA synthetases.
Bioorg Med Chem Lett. 2009 Jul 15;19(14):3845-7. doi: 10.1016/j.bmcl.2009.04.007. Epub 2009 Apr 9.

引用本文的文献

2
Engineering aminoacyl-tRNA synthetases for use in synthetic biology.
Enzymes. 2020;48:351-395. doi: 10.1016/bs.enz.2020.06.004. Epub 2020 Sep 8.
3
Development and Testing of Force Field Parameters for Phenylalanine and Tyrosine Derivatives.
Front Mol Biosci. 2020 Dec 15;7:608931. doi: 10.3389/fmolb.2020.608931. eCollection 2020.
4
Novel chloroquine loaded curcumin based anionic linear globular dendrimer G2: a metabolomics study on using H NMR spectroscopy.
Parasitology. 2020 Jun;147(7):747-759. doi: 10.1017/S0031182020000372. Epub 2020 Feb 27.
5
Improved Modeling of Halogenated Ligand-Protein Interactions Using the Drude Polarizable and CHARMM Additive Empirical Force Fields.
J Chem Inf Model. 2019 Jan 28;59(1):215-228. doi: 10.1021/acs.jcim.8b00616. Epub 2018 Nov 27.
6
Playing with the Molecules of Life.
ACS Chem Biol. 2018 Apr 20;13(4):854-870. doi: 10.1021/acschembio.7b00974. Epub 2018 Mar 2.
7
Continuous directed evolution of aminoacyl-tRNA synthetases.
Nat Chem Biol. 2017 Dec;13(12):1253-1260. doi: 10.1038/nchembio.2474. Epub 2017 Oct 16.
8
Designing logical codon reassignment - Expanding the chemistry in biology.
Chem Sci. 2015 Jan 1;6(1):50-69. doi: 10.1039/c4sc01534g. Epub 2014 Jul 14.
9
Expanding the genetic code of Escherichia coli with phosphotyrosine.
FEBS Lett. 2016 Sep;590(17):3040-7. doi: 10.1002/1873-3468.12333. Epub 2016 Aug 11.
10
Improved Incorporation of Noncanonical Amino Acids by an Engineered tRNA(Tyr) Suppressor.
Biochemistry. 2016 Jan 26;55(3):618-28. doi: 10.1021/acs.biochem.5b01185. Epub 2016 Jan 8.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Expanding the genetic code.
Annu Rev Biophys Biomol Struct. 2006;35:225-49. doi: 10.1146/annurev.biophys.35.101105.121507.
3
Structural characterization of a p-acetylphenylalanyl aminoacyl-tRNA synthetase.
J Am Chem Soc. 2005 Nov 2;127(43):14976-7. doi: 10.1021/ja0549042.
6
Structure and activity of an aminoacyl-tRNA synthetase that charges tRNA with nitro-tryptophan.
Nat Struct Mol Biol. 2005 Mar;12(3):274-5. doi: 10.1038/nsmb907. Epub 2005 Feb 20.
7
Structural basis of nonnatural amino acid recognition by an engineered aminoacyl-tRNA synthetase for genetic code expansion.
Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1366-71. doi: 10.1073/pnas.0407039102. Epub 2005 Jan 25.
8
Expanding the genetic code.
Angew Chem Int Ed Engl. 2004 Dec 17;44(1):34-66. doi: 10.1002/anie.200460627.
9
The site-specific incorporation of p-iodo-L-phenylalanine into proteins for structure determination.
Nat Biotechnol. 2004 Oct;22(10):1297-301. doi: 10.1038/nbt1013. Epub 2004 Sep 19.
10
An aminoacyl-tRNA synthetase that specifically activates pyrrolysine.
Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12450-4. doi: 10.1073/pnas.0405362101. Epub 2004 Aug 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验