Suppr超能文献

位于tRNase Z组氨酸结构域氨基侧两个同源区域的残基,对前体tRNA 3'末端加工有着意想不到的作用。

Residues in two homology blocks on the amino side of the tRNase Z His domain contribute unexpectedly to pre-tRNA 3' end processing.

作者信息

Zareen Neela, Hopkinson Angela, Levinger Louis

机构信息

York College of The City University of New York, Jamaica, 11451, USA.

出版信息

RNA. 2006 Jun;12(6):1104-15. doi: 10.1261/rna.4206. Epub 2006 Apr 17.

Abstract

tRNase Z, which can endonucleolytically remove pre-tRNA 3'-end trailers, possesses the signature His domain (HxHxDH; Motif II) of the beta-lactamase family of metal-dependent hydrolases. Motif II combines with Motifs III-V on its carboxy side to coordinate two divalent metal ions, constituting the catalytic core. The PxKxRN loop and Motif I on the amino side of Motif II have been suggested to modulate tRNase Z activity, including the anti-determinant effect of CCA in mature tRNA. Ala walks through these two homology blocks reveal residues in which the substitutions unexpectedly reduce catalytic efficiency. While substitutions in Motif II can drastically affect k(cat) without affecting k(M), five- to 15-fold increases in k(M) are observed with substitutions in several conserved residues in the PxKxRN loop and Motif I. These increases in k(M) suggest a model for substrate binding. Expressed tRNase Z processes mature tRNA with CCA at the 3' end approximately 80 times less efficiently than a pre-tRNA possessing natural sequence of the 3'-end trailer, due to reduced k(cat) with no effect on k(M), showing the CCA anti-determinant to be a characteristic of this enzyme.

摘要

tRNase Z能够通过内切核酸酶作用去除前体tRNA的3'末端拖尾序列,它具有金属依赖性水解酶β-内酰胺酶家族的标志性His结构域(HxHxDH;基序II)。基序II与其羧基侧的基序III-V结合以配位两个二价金属离子,构成催化核心。有人提出,基序II氨基侧的PxKxRN环和基序I可调节tRNase Z的活性,包括成熟tRNA中CCA的反决定簇效应。对这两个同源结构域进行丙氨酸扫描,发现某些位点的取代意外地降低了催化效率。虽然基序II中的取代可显著影响催化常数(kcat)而不影响米氏常数(kM),但在PxKxRN环和基序I中的几个保守残基发生取代时,米氏常数增加了5至15倍。这些米氏常数的增加提示了一种底物结合模型。由于催化常数降低而对米氏常数无影响,表达的tRNase Z处理3'末端带有CCA的成熟tRNA的效率比具有3'末端拖尾天然序列的前体tRNA低约80倍,这表明CCA反决定簇是该酶的一个特征。

相似文献

2
tRNase Z catalysis and conserved residues on the carboxy side of the His cluster.
Biochemistry. 2007 Aug 21;46(33):9380-7. doi: 10.1021/bi700578v. Epub 2007 Jul 27.
4
Identification and sequence analysis of metazoan tRNA 3'-end processing enzymes tRNase Zs.
PLoS One. 2012;7(9):e44264. doi: 10.1371/journal.pone.0044264. Epub 2012 Sep 4.
7
The flexible arm of tRNase Z is not essential for pre-tRNA binding but affects cleavage site selection.
J Mol Biol. 2008 Aug 29;381(2):289-99. doi: 10.1016/j.jmb.2008.05.016. Epub 2008 May 15.
8
Effects of conserved D/T loop substitutions in the pre-tRNA substrate on tRNase Z catalysis.
RNA Biol. 2008 Apr-Jun;5(2):104-11. doi: 10.4161/rna.5.2.6086. Epub 2008 Apr 11.
9
Identification by Mn2+ rescue of two residues essential for the proton transfer of tRNase Z catalysis.
Nucleic Acids Res. 2006 Aug 11;34(13):3811-8. doi: 10.1093/nar/gkl517. Print 2006.
10
Crystal structure of the tRNA 3' processing endoribonuclease tRNase Z from Thermotoga maritima.
J Biol Chem. 2005 Apr 8;280(14):14138-44. doi: 10.1074/jbc.M500355200. Epub 2005 Jan 27.

引用本文的文献

1
ELAC2/RNaseZ-linked cardiac hypertrophy in Drosophila melanogaster.
Dis Model Mech. 2021 Aug 1;14(8). doi: 10.1242/dmm.048931. Epub 2021 Aug 31.
2
The crystal structure of Trz1, the long form RNase Z from yeast.
Nucleic Acids Res. 2017 Jun 2;45(10):6209-6216. doi: 10.1093/nar/gkx216.
3
Identification and sequence analysis of metazoan tRNA 3'-end processing enzymes tRNase Zs.
PLoS One. 2012;7(9):e44264. doi: 10.1371/journal.pone.0044264. Epub 2012 Sep 4.
6
Catalytic properties of RNase BN/RNase Z from Escherichia coli: RNase BN is both an exo- and endoribonuclease.
J Biol Chem. 2009 Jun 5;284(23):15425-31. doi: 10.1074/jbc.M109.005462. Epub 2009 Apr 14.
7
Effect of changes in the flexible arm on tRNase Z processing kinetics.
J Biol Chem. 2009 Jun 5;284(23):15685-91. doi: 10.1074/jbc.M900745200. Epub 2009 Apr 7.
8
tRNase Z catalysis and conserved residues on the carboxy side of the His cluster.
Biochemistry. 2007 Aug 21;46(33):9380-7. doi: 10.1021/bi700578v. Epub 2007 Jul 27.
9
Optimization and characterization of tRNA-shRNA expression constructs.
Nucleic Acids Res. 2007;35(8):2620-8. doi: 10.1093/nar/gkm103. Epub 2007 Apr 10.

本文引用的文献

6
The polyadenylation factor CPSF-73 is involved in histone-pre-mRNA processing.
Cell. 2005 Oct 7;123(1):37-48. doi: 10.1016/j.cell.2005.08.002.
7
Analysis of the functional modules of the tRNA 3' endonuclease (tRNase Z).
J Biol Chem. 2005 Oct 21;280(42):35440-7. doi: 10.1074/jbc.M506418200. Epub 2005 Aug 22.
9
Crystal structure of the tRNA 3' processing endoribonuclease tRNase Z from Thermotoga maritima.
J Biol Chem. 2005 Apr 8;280(14):14138-44. doi: 10.1074/jbc.M500355200. Epub 2005 Jan 27.
10
Exosite modules guide substrate recognition in the ZiPD/ElaC protein family.
J Biol Chem. 2005 May 6;280(18):17857-62. doi: 10.1074/jbc.M500591200. Epub 2005 Feb 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验