Suppr超能文献

使用近似贝叶斯计算从基因型数据估计结核病传播参数。

Using approximate Bayesian computation to estimate tuberculosis transmission parameters from genotype data.

作者信息

Tanaka Mark M, Francis Andrew R, Luciani Fabio, Sisson S A

机构信息

School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.

出版信息

Genetics. 2006 Jul;173(3):1511-20. doi: 10.1534/genetics.106.055574. Epub 2006 Apr 19.

Abstract

Tuberculosis can be studied at the population level by genotyping strains of Mycobacterium tuberculosis isolated from patients. We use an approximate Bayesian computational method in combination with a stochastic model of tuberculosis transmission and mutation of a molecular marker to estimate the net transmission rate, the doubling time, and the reproductive value of the pathogen. This method is applied to a published data set from San Francisco of tuberculosis genotypes based on the marker IS6110. The mutation rate of this marker has previously been studied, and we use those estimates to form a prior distribution of mutation rates in the inference procedure. The posterior point estimates of the key parameters of interest for these data are as follows: net transmission rate, 0.69/year [95% credibility interval (C.I.) 0.38, 1.08]; doubling time, 1.08 years (95% C.I. 0.64, 1.82); and reproductive value 3.4 (95% C.I. 1.4, 79.7). These figures suggest a rapidly spreading epidemic, consistent with observations of the resurgence of tuberculosis in the United States in the 1980s and 1990s.

摘要

可通过对从患者中分离出的结核分枝杆菌菌株进行基因分型,在人群层面研究结核病。我们使用一种近似贝叶斯计算方法,结合结核病传播和分子标记突变的随机模型,来估计病原体的净传播率、倍增时间和繁殖值。该方法应用于基于标记IS6110的旧金山已发表的结核病基因型数据集。此前已对该标记的突变率进行了研究,我们在推理过程中使用这些估计值来形成突变率的先验分布。这些数据的关键参数的后验点估计如下:净传播率,0.69/年[95%可信区间(C.I.)0.38,1.08];倍增时间,1.08年(95% C.I. 0.64,1.82);繁殖值3.4(95% C.I. 1.4,79.7)。这些数据表明疫情正在迅速蔓延,这与20世纪80年代和90年代美国结核病卷土重来的观察结果一致。

相似文献

1
Using approximate Bayesian computation to estimate tuberculosis transmission parameters from genotype data.
Genetics. 2006 Jul;173(3):1511-20. doi: 10.1534/genetics.106.055574. Epub 2006 Apr 19.
2
Exact vs. approximate computation: reconciling different estimates of Mycobacterium tuberculosis epidemiological parameters.
Genetics. 2014 Apr;196(4):1227-30. doi: 10.1534/genetics.113.158808. Epub 2014 Feb 4.
3
Inferring epidemiological parameters on the basis of allele frequencies.
Genetics. 2011 Jul;188(3):663-72. doi: 10.1534/genetics.111.126466. Epub 2011 May 5.
4
Dissemination of Mycobacterium tuberculosis across the San Francisco Bay Area.
J Infect Dis. 1998 Apr;177(4):1104-7. doi: 10.1086/517405.
6
Understanding tuberculosis epidemiology using structured statistical models.
Artif Intell Med. 2004 Mar;30(3):233-56. doi: 10.1016/j.artmed.2003.11.003.
7
Quantitative impact of human immunodeficiency virus infection on tuberculosis dynamics.
Am J Respir Crit Care Med. 2007 Nov 1;176(9):936-44. doi: 10.1164/rccm.200603-440OC. Epub 2007 Aug 9.
8
On the Identifiability of Transmission Dynamic Models for Infectious Diseases.
Genetics. 2016 Mar;202(3):911-8. doi: 10.1534/genetics.115.180034. Epub 2016 Jan 6.
10
Tuberculosis in healthcare workers: a molecular epidemiologic study in San Francisco.
Infect Control Hosp Epidemiol. 2006 May;27(5):453-8. doi: 10.1086/504504. Epub 2006 Apr 26.

引用本文的文献

2
Bayesian phylodynamic inference of population dynamics with dormancy.
bioRxiv. 2025 Jan 22:2025.01.19.633741. doi: 10.1101/2025.01.19.633741.
3
Moana: Alternate surveillance for COVID-19 in a Unique Population (MASC-UP).
Contemp Clin Trials Commun. 2023 Dec 20;37:101246. doi: 10.1016/j.conctc.2023.101246. eCollection 2024 Feb.
4
Resolving outbreak dynamics using approximate Bayesian computation for stochastic birth-death models.
Wellcome Open Res. 2019 Aug 30;4:14. doi: 10.12688/wellcomeopenres.15048.2. eCollection 2019.
5
Neural networks enable efficient and accurate simulation-based inference of evolutionary parameters from adaptation dynamics.
PLoS Biol. 2022 May 27;20(5):e3001633. doi: 10.1371/journal.pbio.3001633. eCollection 2022 May.
6
ABCDP: Approximate Bayesian Computation with Differential Privacy.
Entropy (Basel). 2021 Jul 27;23(8):961. doi: 10.3390/e23080961.
7
Quantifying cell transitions in C. elegans with data-fitted landscape models.
PLoS Comput Biol. 2021 Jun 1;17(6):e1009034. doi: 10.1371/journal.pcbi.1009034. eCollection 2021 Jun.

本文引用的文献

1
Likelihoods from summary statistics: recent divergence between species.
Genetics. 2005 Nov;171(3):1419-36. doi: 10.1534/genetics.104.040402. Epub 2005 Sep 2.
3
Bayesian estimation of recent migration rates after a spatial expansion.
Genetics. 2005 May;170(1):409-17. doi: 10.1534/genetics.104.034199. Epub 2005 Feb 16.
4
Methods of quantifying and visualising outbreaks of tuberculosis using genotypic information.
Infect Genet Evol. 2005 Jan;5(1):35-43. doi: 10.1016/j.meegid.2004.06.001.
5
6
The control of copy number of IS6110 in Mycobacterium tuberculosis.
Mol Biol Evol. 2004 Dec;21(12):2195-201. doi: 10.1093/molbev/msh234. Epub 2004 Aug 18.
8
Markov chain Monte Carlo without likelihoods.
Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15324-8. doi: 10.1073/pnas.0306899100. Epub 2003 Dec 8.
10
Approximate Bayesian computation in population genetics.
Genetics. 2002 Dec;162(4):2025-35. doi: 10.1093/genetics/162.4.2025.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验