Suppr超能文献

对在固定时间间隔观测到的“步数与转向”连续时间随机游走使用近似贝叶斯推断。

Using approximate Bayesian inference for a "steps and turns" continuous-time random walk observed at regular time intervals.

作者信息

Ruiz-Suarez Sofia, Leos-Barajas Vianey, Alvarez-Castro Ignacio, Morales Juan Manuel

机构信息

INIBIOMA (CONICET-Universidad Nacional del Comahue), Rio Negro, Argentina.

Facultad de Ciencias Económicas, Universidad Nacional de Rosario, Rosario, Argentina.

出版信息

PeerJ. 2020 Feb 11;8:e8452. doi: 10.7717/peerj.8452. eCollection 2020.

Abstract

The study of animal movement is challenging because movement is a process modulated by many factors acting at different spatial and temporal scales. In order to describe and analyse animal movement, several models have been proposed which differ primarily in the temporal conceptualization, namely continuous and discrete time formulations. Naturally, animal movement occurs in continuous time but we tend to observe it at fixed time intervals. To account for the temporal mismatch between observations and movement decisions, we used a state-space model where movement decisions (steps and turns) are made in continuous time. That is, at any time there is a non-zero probability of making a change in movement direction. The movement process is then observed at regular time intervals. As the likelihood function of this state-space model turned out to be intractable yet simulating data is straightforward, we conduct inference using different variations of Approximate Bayesian Computation (ABC). We explore the applicability of this approach as a function of the discrepancy between the temporal scale of the observations and that of the movement process in a simulation study. Simulation results suggest that the model parameters can be recovered if the observation time scale is moderately close to the average time between changes in movement direction. Good estimates were obtained when the scale of observation was up to five times that of the scale of changes in direction. We demonstrate the application of this model to a trajectory of a sheep that was reconstructed in high resolution using information from magnetometer and GPS devices. The state-space model used here allowed us to connect the scales of the observations and movement decisions in an intuitive and easy to interpret way. Our findings underscore the idea that the time scale at which animal movement decisions are made needs to be considered when designing data collection protocols. In principle, ABC methods allow to make inferences about movement processes defined in continuous time but in terms of easily interpreted steps and turns.

摘要

动物运动的研究具有挑战性,因为运动是一个由许多在不同空间和时间尺度上起作用的因素所调节的过程。为了描述和分析动物运动,已经提出了几种模型,这些模型主要在时间概念化方面有所不同,即连续时间公式和离散时间公式。自然地,动物运动发生在连续时间中,但我们倾向于以固定的时间间隔对其进行观察。为了解决观测与运动决策之间的时间不匹配问题,我们使用了一种状态空间模型,其中运动决策(步长和转向)在连续时间内做出。也就是说,在任何时候都有非零概率改变运动方向。然后以规则的时间间隔观察运动过程。由于该状态空间模型的似然函数难以处理,但模拟数据却很简单,我们使用近似贝叶斯计算(ABC)的不同变体进行推断。在一项模拟研究中,我们探讨了这种方法作为观测时间尺度与运动过程时间尺度之间差异的函数的适用性。模拟结果表明,如果观测时间尺度适度接近运动方向变化之间的平均时间,则可以恢复模型参数。当观测尺度高达方向变化尺度的五倍时,获得了良好的估计。我们展示了该模型在一只绵羊轨迹上的应用,该轨迹是利用磁力计和GPS设备的信息以高分辨率重建的。这里使用的状态空间模型使我们能够以直观且易于解释的方式连接观测和运动决策的尺度。我们的研究结果强调了这样一个观点,即在设计数据收集协议时需要考虑动物做出运动决策的时间尺度。原则上,ABC方法允许对连续时间中定义的运动过程进行推断,但可以用易于解释的步长和转向来表示。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验