Panoiu Nicolae C, Osgood Richard M, Malomed Boris A
Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA.
Opt Lett. 2006 Apr 15;31(8):1097-9. doi: 10.1364/ol.31.001097.
We demonstrate that an array of discrete waveguides on a slab substrate, both featuring chi2 nonlinearity, supports stable solitons composed of discrete and continuous components. Two classes of fundamental composite soliton are identified: ones consisting of a discrete fundamental-frequency (FF) component in the waveguide array, coupled to a continuous second-harmonic (SH) component in the slab waveguide, and solitons with an inverted FF/SH structure. Twisted bound states of the fundamental solitons are found, too. In contrast with the usual systems, the intersite-centered fundamental solitons and bound states with the twisted continuous components are stable over almost the entire domain of their existence.
我们证明,在具有χ2非线性的平板衬底上的一系列离散波导支持由离散和连续分量组成的稳定孤子。识别出两类基本复合孤子:一类由波导阵列中的离散基频(FF)分量与平板波导中的连续二次谐波(SH)分量耦合而成,另一类是具有倒置FF/SH结构的孤子。还发现了基本孤子的扭曲束缚态。与通常的系统不同,以格点中心的基本孤子和具有扭曲连续分量的束缚态在其几乎整个存在域内都是稳定的。