Essiz Sebnem, Coalson Rob D
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
J Chem Phys. 2006 Apr 14;124(14):144116. doi: 10.1063/1.2158996.
The rotation and translation block (RTB) method of Durand et al. [Biopolymers 34, 759 (1994)] and Tama et al. [Proteins 41, 1 (2000)] provides an appealing way to calculate low-frequency normal modes of large biomolecules by restricting the space of motions to exclude internal motions of preselected rigid fragments within the molecule. These fragments are modeled essentially as rigid bodies and the need to calculate high-frequency relative motions of the atoms that form them is obviated in a natural way. Here we extend the RTB approach into a method for computing the classical (Newtonian) dynamics of a biomolecule, or any large molecule, with effective rigid-body constraints applied to a prechosen set of internal molecular fragments. This method, to be termed RTB dynamics, is easy to implement, conserves the total energy of the system, does not require the construction of the matrix of second spatial derivatives of the potential-energy function (Hessian matrix), and can be used to compute the classical dynamics of a system moving in an arbitrary anharmonic force field. An elementary numerical application to signal propagation in the small membrane-bound polypeptide gramicidin-A is presented for illustration purposes.
杜兰德等人[《生物聚合物》34, 759 (1994)]以及塔马等人[《蛋白质》41, 1 (2000)]提出的旋转和平移块(RTB)方法,通过限制运动空间以排除分子内预先选定的刚性片段的内部运动,为计算大型生物分子的低频正常模式提供了一种有吸引力的方式。这些片段基本上被建模为刚体,从而自然地避免了计算构成它们的原子的高频相对运动的需求。在此,我们将RTB方法扩展为一种计算生物分子或任何大分子经典(牛顿)动力学的方法,对预先选定的一组分子内片段应用有效的刚体约束。这种方法将被称为RTB动力学,它易于实现,能守恒系统的总能量,不需要构建势能函数的二阶空间导数矩阵(海森矩阵),并且可用于计算在任意非谐力场中运动的系统的经典动力学。为了说明目的,给出了一个关于小的膜结合多肽短杆菌肽 - A中信号传播的基本数值应用。