Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA.
Biophys J. 2010 Feb 17;98(4):657-66. doi: 10.1016/j.bpj.2009.10.043.
Decomposition of the intrinsic dynamics of proteins into collective motions among distant regions of the protein structure provides a physically appealing approach that couples the dynamics of the system with its functional role. The cellular functions of microtubules (an essential component of the cytoskeleton in all eukaryotic cells) depend on their dynamic instability, which is altered by various factors among which applied forces are central. To shed light on the coupling between forces and the dynamic instability of microtubules, we focus on the investigation of the response of the microtubule subunits (tubulin) to applied forces. We address this point by adapting an approach designed to survey correlations for the equilibrium dynamics of proteins to the case of correlations for proteins forced-dynamics. The resulting collective motions in tubulin have a number of functional implications, such as the identification of long-range couplings with a role in blocking the dynamic instability of microtubules. A fundamental implication of our study for the life of a cell is that, to increase the likelihood of unraveling of large cytoskeletal filaments under physiological forces, molecular motors must use a combination of pulling and torsion rather than just pulling.
将蛋白质的内部分子动力学分解为蛋白质结构中远距离区域之间的集体运动,为将系统动力学与其功能作用联系起来提供了一种具有吸引力的物理方法。微管(所有真核细胞中细胞骨架的基本组成部分)的细胞功能依赖于其动态不稳定性,而这种不稳定性会受到各种因素的影响,其中施加的力是核心因素。为了阐明力与微管动态不稳定性之间的耦合关系,我们专注于研究微管亚基(微管蛋白)对施加力的反应。我们通过适应一种方法来解决这个问题,该方法旨在调查蛋白质平衡动力学的相关性,以适应蛋白质受力动力学的相关性。微管蛋白中产生的集体运动具有许多功能意义,例如确定在阻止微管动态不稳定性方面具有作用的远程耦合。我们的研究对细胞生命的一个基本意义是,为了增加在生理力下解开大细胞骨架纤维的可能性,分子马达必须使用拉力和扭转力的组合,而不仅仅是拉力。