Phintha Aisaraphon, Lukowski April L, Chaiyen Pimchai
School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 10120, Thailand.
Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093.
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2409479122. doi: 10.1073/pnas.2409479122. Epub 2024 Dec 30.
A single-component flavin-dependent halogenase, AetF, has emerged as an attractive biocatalyst for catalyzing halogenation. However, its flavin chemistry remains unexplored and cannot be predicted due to its uniqueness in sequence and structure compared to other flavin-dependent monooxygenases. Here, we investigated the flavin reactions of AetF using transient kinetics. Our data revealed that NADP binding is required for formation of C4a-hydroperoxy flavin adenine dinucleotide (FAD) (FAD), a key flavin-oxygen adduct required for generating a halogenating species. In the presence of NaBr without L-tryptophan, the flavin oxygen adduct intermediates [possibly FAD and C4a-hydroxy FAD (FAD)] are highly stabilized (>4,000 s) before returning to the oxidized FAD state. In the presence of L-tryptophan, the rate of FAD dehydration to form oxidized FAD increased by ~825-fold. These data suggest that the presence of all substrates is required for speeding up AetF's catalytic cycle. Our findings underscore the adeptness of AetF in managing its reactivity through ligand control. Structural and tunnel analyses revealed that the binding of NADP and L-tryptophan induces changes in protein tunnels which may potentially link to the ligand-controlled mechanisms. Leveraging these catalytic insights, we employed light-induced flavin reduction and NADP stimulation to enable AetF halogenation of various compounds. Our findings demonstrate the mechanisms of precise control over flavin chemistry by AetF. These mechanistic insights may be useful for the biocatalytic development of single-component flavin-dependent halogenases.
一种单组分黄素依赖性卤化酶AetF,已成为一种有吸引力的催化卤化反应的生物催化剂。然而,由于其与其他黄素依赖性单加氧酶在序列和结构上的独特性,其黄素化学仍未被探索且无法预测。在这里,我们使用瞬态动力学研究了AetF的黄素反应。我们的数据表明,形成C4a-氢过氧黄素腺嘌呤二核苷酸(FAD)(FAD)需要NADP结合,FAD是产生卤化物种所需的关键黄素-氧加合物。在没有L-色氨酸的NaBr存在下,黄素氧加合物中间体[可能是FAD和C4a-羟基FAD(FAD)]在恢复到氧化FAD状态之前高度稳定(>4000秒)。在L-色氨酸存在下,FAD脱水形成氧化FAD的速率增加了约825倍。这些数据表明,加速AetF催化循环需要所有底物的存在。我们的发现强调了AetF通过配体控制来管理其反应性的能力。结构和通道分析表明,NADP和L-色氨酸的结合会引起蛋白质通道的变化,这可能与配体控制机制有关。利用这些催化见解,我们采用光诱导黄素还原和NADP刺激来实现AetF对各种化合物的卤化。我们的发现揭示了AetF对黄素化学进行精确控制的机制。这些机制见解可能有助于单组分黄素依赖性卤化酶的生物催化开发。