Suppr超能文献

Colloid dispersion in a uniform-aperture fracture.

作者信息

Reno Marissa D, James Scott C, Altman Susan J

机构信息

Sandia National Laboratories, Geohydrology Department, P.O. Box 5800, Albuquerque, NM 87185-0735, USA.

出版信息

J Colloid Interface Sci. 2006 Aug 1;300(1):383-90. doi: 10.1016/j.jcis.2006.03.067. Epub 2006 Apr 3.

Abstract

This research investigates the dispersion of colloids through fracture systems by exploring experimentally and numerically the transport and dispersion of 1.0-, 0.11-, and 0.043-mum diameter fluorescent carboxylate-modified microspheres and chloride at various flow rates through variable-length, synthetic Plexiglas fractures (flow cells). A dimensionless number describing each experiment is varied by changing the colloid size, flow rate, and fracture length. Surface characteristics of the microspheres and Plexiglas favor repulsive interactions, thereby minimizing the chance of colloid filtration and remobilization. Full recovery of the colloids is typically observed, thereby supporting the assumption of negligible colloid filtration. In comparison to chloride transport, there is increased tailing for colloid plumes traveling through the flow cell. This increased tailing is attributed to Taylor dispersion phenomena (dispersion due to an advection gradient). In the synthetic fractures investigated here, colloid dispersion due to the velocity gradient is evident, but fully developed Taylor conditions are not realized. A particle-tracking algorithm is run inversely to estimate the effective dispersion rate for the colloid plume in each experiment as a function of the experimental parameters (flow rate, fracture length, and colloid size). Results suggest that the log of the effective dispersion rate of the colloid plume increases linearly with the log of the dimensionless number comprising experimental parameters.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验