Fregni Felipe, Pascual-Leone Alvaro
Harvard Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
Cogn Behav Neurol. 2006 Mar;19(1):21-33. doi: 10.1097/00146965-200603000-00003.
The motor deficits after stroke are not only the manifestation of the injured brain region, but rather the expression of the ability of the rest of the brain to maintain function. After a lesion in the primary motor cortex, parallel motor circuits might be activated to generate some alternative input to the spinal motoneurons. These parallel circuits may originate from areas such as the contralateral, undamaged primary motor area, bilateral premotor areas, bilateral supplementary motor areas, bilateral somatosensory areas, cerebellum, and basal ganglia. Most importantly, the efferent, cortico-spinal output pathways must be preserved for a desired behavioral result. Most of the recovery of function after a stroke may represent actual relearning of the skills with the injured brain. The main neural mechanisms underlying this relearning process after stroke involve shifts of distributed contributions across a specific neural network (fundamentally the network engaged in skill learning in the healthy). If these notions are indeed correct, then neuromodulatory approaches, such as transcranial magnetic stimulation, targeting these parallel circuits might be useful to limit injury and promote recovery after a stroke. This paper reviews the stroke characteristics that can predict a good recovery and compensations across brain areas that can be implemented after a stroke to accelerate motor function recovery.
中风后的运动功能障碍不仅是受损脑区的表现,更是大脑其余部分维持功能能力的体现。在初级运动皮层受损后,平行运动回路可能会被激活,从而为脊髓运动神经元产生一些替代输入。这些平行回路可能起源于对侧未受损的初级运动区、双侧运动前区、双侧辅助运动区、双侧躯体感觉区、小脑和基底神经节等区域。最重要的是,为了获得理想的行为结果,传出的皮质脊髓输出通路必须得以保留。中风后大部分功能恢复可能代表着利用受损大脑对技能进行实际再学习。中风后这种再学习过程的主要神经机制涉及特定神经网络(基本上是健康状态下参与技能学习的网络)中分布式贡献的转移。如果这些观点确实正确,那么针对这些平行回路的神经调节方法,如经颅磁刺激,可能有助于限制损伤并促进中风后的恢复。本文综述了可预测良好恢复效果的中风特征以及中风后可实施的跨脑区补偿措施,以加速运动功能恢复。