Suppr超能文献

增强中风后手运动功能恢复:个性化脑机接口系统RehabSwift的疗效

Enhancing poststroke hand movement recovery: Efficacy of RehabSwift, a personalized brain-computer interface system.

作者信息

Darvishi Sam, Datta Gupta Anupam, Hamilton-Bruce Anne, Koblar Simon, Baumert Mathias, Abbott Derek

机构信息

RehabSwift Pty Ltd, 10 Pulteney Street, The University of Adelaide, Adelaide, SA 5000, Australia.

School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA 5000, Australia.

出版信息

PNAS Nexus. 2024 Jul 9;3(7):pgae240. doi: 10.1093/pnasnexus/pgae240. eCollection 2024 Jul.

Abstract

This study explores the efficacy of our novel and personalized brain-computer interface (BCI) therapy, in enhancing hand movement recovery among stroke survivors. Stroke often results in impaired motor function, posing significant challenges in daily activities and leading to considerable societal and economic burdens. Traditional physical and occupational therapies have shown limitations in facilitating satisfactory recovery for many patients. In response, our study investigates the potential of motor imagery-based BCIs (MI-BCIs) as an alternative intervention. In this study, MI-BCIs translate imagined hand movements into actions using a combination of scalp-recorded electrical brain activity and signal processing algorithms. Our prior research on MI-BCIs, which emphasizes the benefits of proprioceptive feedback over traditional visual feedback and the importance of customizing the delay between brain activation and passive hand movement, led to the development of RehabSwift therapy. In this study, we recruited 12 chronic-stage stroke survivors to assess the effectiveness of our solution. The primary outcome measure was the Fugl-Meyer upper extremity (FMA-UE) assessment, complemented by secondary measures including the action research arm test, reaction time, unilateral neglect, spasticity, grip and pinch strength, goal attainment scale, and FMA-UE sensation. Our findings indicate a remarkable improvement in hand movement and a clinically significant reduction in poststroke arm and hand impairment following 18 sessions of neurofeedback training. The effects persisted for at least 4 weeks posttreatment. These results underscore the potential of MI-BCIs, particularly our solution, as a prospective tool in stroke rehabilitation, offering a personalized and adaptable approach to neurofeedback training.

摘要

本研究探讨了我们新颖的个性化脑机接口(BCI)疗法在促进中风幸存者手部运动恢复方面的疗效。中风常导致运动功能受损,给日常活动带来重大挑战,并造成相当大的社会和经济负担。传统的物理和职业疗法在帮助许多患者实现满意恢复方面已显示出局限性。作为回应,我们的研究调查了基于运动想象的脑机接口(MI-BCI)作为一种替代干预措施的潜力。在本研究中,MI-BCI利用头皮记录的脑电活动和信号处理算法的组合,将想象中的手部运动转化为实际动作。我们之前对MI-BCI的研究强调了本体感觉反馈优于传统视觉反馈的好处,以及定制大脑激活与被动手部运动之间延迟的重要性,从而促成了RehabSwift疗法的开发。在本研究中,我们招募了12名慢性期中风幸存者来评估我们方案的有效性。主要结局指标是Fugl-Meyer上肢(FMA-UE)评估,辅以包括动作研究臂试验、反应时间、单侧忽略、痉挛、握力和捏力、目标达成量表以及FMA-UE感觉等次要指标。我们的研究结果表明,经过18次神经反馈训练后,手部运动有显著改善,中风后手臂和手部损伤在临床上有显著减轻。这些效果在治疗后至少持续了4周。这些结果强调了MI-BCI,特别是我们的方案,作为中风康复中一种前瞻性工具的潜力,为神经反馈训练提供了一种个性化且适应性强的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验