Zhang Wenzheng, Xia Xuefeng, Reisenauer Mary Rose, Hemenway Charles S, Kone Bruce C
Department of Internal Medicine, Health Science Center, The University of Texas Medical School at Houston, 6431 Fannin, Houston, TX 77030, USA.
J Biol Chem. 2006 Jun 30;281(26):18059-68. doi: 10.1074/jbc.M601903200. Epub 2006 Apr 24.
Aldosterone is a major regulator of epithelial Na(+) absorption and acts in large part through induction of the epithelial Na(+) channel (ENaC) gene in the renal collecting duct. We previously identified Dot1a as an aldosterone early repressed gene and a repressor of ENaCalpha transcription through mediating histone H3 Lys-79 methylation associated with the ENaCalpha promoter. Here, we report a novel aldosterone-signaling network involving AF9, Dot1a, and ENaCalpha. AF9 and Dot1a interact in vitro and in vivo as evidenced in multiple assays and colocalize in the nuclei of mIMCD3 renal collecting duct cells. Overexpression of AF9 results in hypermethylation of histone H3 Lys-79 at the endogenous ENaCalpha promoter at most, but not all subregions examined, repression of endogenous ENaCalpha mRNA expression and acts synergistically with Dot1a to inhibit ENaCalpha promoter-luciferase constructs. In contrast, RNA interference-mediated knockdown of AF9 causes the opposite effects. Chromatin immunoprecipitation assays reveal that overexpressed FLAG-AF9, endogenous AF9, and Dot1a are each associated with the ENaCalpha promoter. Aldosterone negatively regulates AF9 expression at both mRNA and protein levels. Thus, Dot1a-AF9 modulates histone H3 Lys-79 methylation at the ENaCalpha promoter and represses ENaCalpha transcription in an aldosterone-sensitive manner. This mechanism appears to be more broadly applicable to other aldosterone-regulated genes because overexpression of AF9 alone or in combination with Dot1a inhibited mRNA levels of three other known aldosterone-inducible genes in mIMCD3 cells.
醛固酮是上皮细胞钠(Na⁺)吸收的主要调节因子,在很大程度上通过诱导肾集合管中的上皮钠通道(ENaC)基因发挥作用。我们之前将Dot1a鉴定为醛固酮早期抑制基因,并且它通过介导与ENaCα启动子相关的组蛋白H3赖氨酸-79甲基化来抑制ENaCα转录。在此,我们报告了一个涉及AF9、Dot1a和ENaCα的新型醛固酮信号网络。AF9和Dot1a在体外和体内相互作用,多种实验证明了这一点,并且它们在mIMCD3肾集合管细胞的细胞核中共定位。AF9的过表达最多导致内源性ENaCα启动子处组蛋白H3赖氨酸-79的高甲基化,但并非在所检测的所有亚区域均如此,它还抑制内源性ENaCα mRNA表达,并与Dot1a协同作用抑制ENaCα启动子 - 荧光素酶构建体。相反,RNA干扰介导的AF9敲低会产生相反的效果。染色质免疫沉淀实验表明,过表达的FLAG - AF9、内源性AF9和Dot1a均与ENaCα启动子相关。醛固酮在mRNA和蛋白质水平上均负向调节AF9表达。因此,Dot1a - AF9以醛固酮敏感的方式调节ENaCα启动子处的组蛋白H3赖氨酸-79甲基化并抑制ENaCα转录。这种机制似乎更广泛地适用于其他醛固酮调节的基因,因为单独过表达AF9或与Dot1a联合过表达均可抑制mIMCD3细胞中其他三个已知的醛固酮诱导基因的mRNA水平。