Department of Cell & Developmental Biology, Biocenter, University of Würzburggrid.8379.5, Würzburg, Germany.
Quantitative Proteomics, Institute of Molecular Biologygrid.424631.6 (IMB), Mainz, Germany.
mBio. 2021 Dec 21;12(6):e0135221. doi: 10.1128/mBio.01352-21. Epub 2021 Nov 9.
The parasite Trypanosoma brucei periodically changes the expression of protective variant surface glycoproteins (VSGs) to evade its host's immune system in a process known as antigenic variation. One route to change VSG expression is the transcriptional activation of a previously silent VSG expression site (ES), a subtelomeric region containing the genes. Homologous recombination of a different from a large reservoir into the active ES represents another route. The conserved histone methyltransferase DOT1B is involved in transcriptional silencing of inactive ES and influences ES switching kinetics. The molecular machinery that enables DOT1B to execute these regulatory functions remains elusive, however. To better understand DOT1B-mediated regulatory processes, we purified DOT1B-associated proteins using complementary biochemical approaches. We identified several novel DOT1B interactors. One of these was the RNase H2 complex, previously shown to resolve RNA-DNA hybrids, maintain genome integrity, and play a role in antigenic variation. Our study revealed that DOT1B depletion results in an increase in RNA-DNA hybrids, accumulation of DNA damage, and ES switching events. Surprisingly, a similar pattern of VSG deregulation was observed in RNase H2 mutants. We propose that both proteins act together in resolving R-loops to ensure genome integrity and contribute to the tightly regulated process of antigenic variation. Trypanosoma brucei is a unicellular parasite that causes devastating diseases like sleeping sickness in humans and the "nagana" disease in cattle in Africa. Fundamental to the establishment and prolongation of a trypanosome infection is the parasite's ability to escape the mammalian host's immune system by antigenic variation, which relies on periodic changes of a protein surface coat. The exact mechanisms, however, which mediate these changes are still elusive. In this work, we describe a novel protein complex consisting of the histone methyltransferase DOT1B and RNase H2 which is involved in antigenic variation.
寄生虫布氏锥虫周期性地改变保护性变异表面糖蛋白(VSG)的表达,以逃避其宿主的免疫系统,这一过程被称为抗原变异。改变 VSG 表达的一种途径是先前沉默的 VSG 表达位点(ES)的转录激活,ES 是一个包含 基因的端粒外区域。来自大量储库的不同 基因的同源重组到活性 ES 中代表了另一种途径。保守的组蛋白甲基转移酶 DOT1B 参与失活 ES 的转录沉默,并影响 ES 转换动力学。然而,使 DOT1B 执行这些调节功能的分子机制仍然难以捉摸。为了更好地理解 DOT1B 介导的调节过程,我们使用互补的生化方法纯化了与 DOT1B 相关的蛋白质。我们鉴定了几个新的 DOT1B 相互作用蛋白。其中之一是核糖核酸酶 H2 复合物,先前已显示其能解决 RNA-DNA 杂交体,维持基因组完整性,并在抗原变异中发挥作用。我们的研究表明,DOT1B 耗尽会导致 RNA-DNA 杂交体增加、DNA 损伤积累和 ES 转换事件增加。令人惊讶的是,在核糖核酸酶 H2 突变体中也观察到类似的 VSG 失调模式。我们提出,这两种蛋白质共同作用于解决 R 环,以确保基因组完整性,并有助于抗原变异的严格调控过程。布氏锥虫是一种单细胞寄生虫,会在非洲引起人类昏睡病和牛的“那加那”病等毁灭性疾病。寄生虫建立和延长感染的基础是其通过抗原变异逃避哺乳动物宿主免疫系统的能力,这依赖于周期性改变蛋白质表面涂层。然而,介导这些变化的确切机制仍不清楚。在这项工作中,我们描述了一个由组蛋白甲基转移酶 DOT1B 和核糖核酸酶 H2 组成的新蛋白质复合物,该复合物参与抗原变异。