Suppr超能文献

Inactivation modifiers of Na+ currents and the gating of rat brain Na+ channels in planar lipid membranes.

作者信息

Cukierman S

机构信息

Division of Biomedical Sciences, University of California, Riverside 92521-0121.

出版信息

Pflugers Arch. 1991 Nov;419(5):514-21. doi: 10.1007/BF00370798.

Abstract

Rat brain Na+ channels whose inactivation process had been removed either by batrachotoxin (BTX) or veratridine (VT) were reconstituted into planar lipid membranes. The voltage dependence of the open probability (Po) of the channel, of the opening and closing rate constants, and the conductance and relative permeability for Na+ and K+ were studied in voltage-clamp conditions in the presence of agents known to modify the inactivation of Na+ currents. In relation to alkaloids (BTX, VT, and aconitine), it was found that once a Na+ channel was modified by BTX or VT, the addition of another alkaloid did not change further the gating and permeation properties of the channel over a period of about 1 h. Once the inactivation process of the channels is removed by BTX, the addition of a proteolytic enzyme (trypsin) or an halogenated compound (chloramine-T, CT) induced profound and specific modifications on the opening and closing events of Na+ channels: (1) the voltage dependence of the channel Po shifted to more hyperpolarized potentials; (2) this voltage shift can be explained by equal hyperpolarizing voltage shifts of the opening and closing rate constants of the channel; (3) although the gating properties of the channel were modified by these compounds, the permeation properties of the channel, as evaluated by the conductance and the selectivity to Na+ and K+ ions, were unaltered; (4) trypsin and CT were active only in the intracellular side of the channel and were irreversible within the time course of the experiments, suggesting covalent modifications of the channel. Inactivation modifiers also affected the gating of toxin-activated single Na+ channels.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验