Hattori Yoshiyuki, Suzuki Kunihiro, Hattori Sachiko, Kasai Kikuo
Department of Endocrinology and Metabolism, Dokkyo University School of Medicine, Mibu, Tochigi 321-0293, Japan.
Hypertension. 2006 Jun;47(6):1183-8. doi: 10.1161/01.HYP.0000221429.94591.72. Epub 2006 Apr 24.
AMP-activated protein kinase (AMPK) is tightly regulated by the cellular AMP:ATP ratio and plays a central role in regulation of energy homeostasis and metabolic stress. Metformin has been shown to activate AMPK. We hypothesized that metformin may prevent nuclear factor kappaB (NF-kappaB) activation in endothelial cells exposed to inflammatory cytokines. Metformin was observed to activate AMPK, as well as its downstream target, phosphoacetyl coenzyme A carboxylase, in human umbilical vein endothelial cells (HUVECs). Metformin also dose-dependently inhibited tumor necrosis factor (TNF)-alpha-induced NF-kappaB activation and TNF-alpha-induced IkappaB kinase activity. Furthermore, metformin attenuated the TNF-alpha-induced gene expression of various proinflammatory and cell adhesion molecules, such as vascular cell adhesion molecule-1, E-selectin, intercellular adhesion molecule-1, and monocyte chemoattractant protein-1, in HUVECs. A pharmacological activator of AMPK, 5-amino-4-imidazole carboxamide riboside (AICAR), dose-dependently inhibited TNF-alpha- and interleukin-1beta-induced NF-kappaB reporter gene expression. AICAR also suppressed the TNF-alpha- and interleukin-1beta-induced gene expression of vascular cell adhesion molecule-1, E-selectin, intercellular adhesion molecule-1, and monocyte chemoattractant protein-1 in HUVECs. The small interfering RNA for AMPKalpha1 attenuated metformin or AICAR-induced inhibition of NF-kappaB activation by TNF-alpha, suggesting a possible role of AMPK in the regulation of cell inflammation. In light of these findings, we suggest that metformin attenuates the cytokine-induced expression of proinflammatory and adhesion molecule genes by inhibiting NF-kappaB activation via AMPK activation. Thus, it might be useful to target AMPK signaling in future efforts to prevent atherogenic and inflammatory vascular disease.
AMP激活的蛋白激酶(AMPK)受细胞内AMP:ATP比值的严格调控,在能量稳态调节和代谢应激中发挥核心作用。二甲双胍已被证明可激活AMPK。我们推测,二甲双胍可能预防暴露于炎性细胞因子的内皮细胞中核因子κB(NF-κB)的激活。在人脐静脉内皮细胞(HUVECs)中观察到二甲双胍可激活AMPK及其下游靶点磷酸化乙酰辅酶A羧化酶。二甲双胍还能剂量依赖性地抑制肿瘤坏死因子(TNF)-α诱导的NF-κB激活以及TNF-α诱导的IκB激酶活性。此外,二甲双胍减弱了TNF-α诱导的HUVECs中多种促炎和细胞黏附分子的基因表达,如血管细胞黏附分子-1、E-选择素、细胞间黏附分子-1和单核细胞趋化蛋白-1。AMPK的药理学激活剂5-氨基-4-咪唑甲酰胺核苷(AICAR)能剂量依赖性地抑制TNF-α和白细胞介素-1β诱导的NF-κB报告基因表达。AICAR还抑制了TNF-α和白细胞介素-1β诱导的HUVECs中血管细胞黏附分子-1、E-选择素、细胞间黏附分子-1和单核细胞趋化蛋白-1的基因表达。针对AMPKα1的小干扰RNA减弱了二甲双胍或AICAR对TNF-α诱导的NF-κB激活的抑制作用,提示AMPK在细胞炎症调节中可能发挥作用。鉴于这些发现,我们认为二甲双胍通过激活AMPK抑制NF-κB激活,从而减弱细胞因子诱导的促炎和黏附分子基因的表达。因此,在未来预防动脉粥样硬化性和炎性血管疾病的研究中,靶向AMPK信号通路可能是有用的。