Suppr超能文献

用于肾脏透析的离子液体衍生血液相容性复合膜。

Ionic liquid-derived blood-compatible composite membranes for kidney dialysis.

作者信息

Murugesan Saravanababu, Mousa Shaker, Vijayaraghavan Aravind, Ajayan Pulickel M, Linhardt Robert J

机构信息

Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

出版信息

J Biomed Mater Res B Appl Biomater. 2006 Nov;79(2):298-304. doi: 10.1002/jbm.b.30542.

Abstract

A novel heparin- and cellulose-based biocomposite is fabricated by exploiting the enhanced dissolution of polysaccharides in room temperature ionic liquids (RTILs). This represents the first reported example of using a new class of solvents, RTILs, to fabricate blood-compatible biomaterials. Using this approach, it is possible to fabricate the biomaterials in any form, such as films or membranes, fibers (nanometer- or micron-sized), spheres (nanometer- or micron-sized), or any shape using templates. In this work, we have evaluated a membrane film of this composite. Surface morphological studies on this biocomposite film showed the uniformly distributed presence of heparin throughout the cellulose matrix. Activated partial thromboplastin time and thromboelastography demonstrate that this composite is superior to other existing heparinized biomaterials in preventing clot formation in human blood plasma and in human whole blood. Membranes made of these composites allow the passage of urea while retaining albumin, representing a promising blood-compatible biomaterial for renal dialysis, with a possibility of eliminating the systemic administration of heparin to the patients undergoing renal dialysis.

摘要

一种新型的基于肝素和纤维素的生物复合材料是通过利用多糖在室温离子液体(RTILs)中溶解性增强的特性制备而成。这是首次报道使用一类新型溶剂——室温离子液体来制备血液相容性生物材料的实例。采用这种方法,可以制备任何形式的生物材料,如薄膜或膜、纤维(纳米或微米尺寸)、球体(纳米或微米尺寸),或使用模板制备任何形状的材料。在这项工作中,我们对这种复合材料的膜进行了评估。对这种生物复合膜的表面形态学研究表明,肝素均匀分布在整个纤维素基质中。活化部分凝血活酶时间和血栓弹性描记法表明,这种复合材料在防止人血浆和全血中形成凝块方面优于其他现有的肝素化生物材料。由这些复合材料制成的膜允许尿素通过,同时保留白蛋白,这代表了一种有前景的用于肾透析的血液相容性生物材料,有可能消除对接受肾透析患者的肝素全身给药。

相似文献

1
Ionic liquid-derived blood-compatible composite membranes for kidney dialysis.
J Biomed Mater Res B Appl Biomater. 2006 Nov;79(2):298-304. doi: 10.1002/jbm.b.30542.
2
Heparin-cellulose-charcoal composites for drug detoxification prepared using room temperature ionic liquids.
Chem Commun (Camb). 2008 Oct 28(40):5022-4. doi: 10.1039/b809791g. Epub 2008 Sep 2.
3
Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids.
Biomacromolecules. 2006 Feb;7(2):415-8. doi: 10.1021/bm050837s.
4
Structure-property relationships of Thai silk-microcrystalline cellulose biocomposite materials fabricated from ionic liquid.
Int J Biol Macromol. 2017 Nov;104(Pt A):919-928. doi: 10.1016/j.ijbiomac.2017.06.103. Epub 2017 Jun 27.
5
Impact of ionic liquid type on the structure, morphology and properties of silk-cellulose biocomposite materials.
Int J Biol Macromol. 2018 Mar;108:333-341. doi: 10.1016/j.ijbiomac.2017.11.137. Epub 2017 Nov 22.
6
Engineering of sustainable biomaterial composites from cellulose and silk fibroin: Fundamentals and applications.
Int J Biol Macromol. 2021 Jan 15;167:687-718. doi: 10.1016/j.ijbiomac.2020.11.151. Epub 2020 Nov 27.
9
Optimal anticoagulation strategy in haemodialysis with heparin-coated polyacrylonitrile membrane.
Nephrol Dial Transplant. 2003 Oct;18(10):2097-104. doi: 10.1093/ndt/gfg272.
10
Preparation of cellulose/polyvinyl alcohol biocomposite films using 1-n-butyl-3-methylimidazolium chloride.
Int J Biol Macromol. 2013 Nov;62:379-86. doi: 10.1016/j.ijbiomac.2013.08.050. Epub 2013 Sep 27.

引用本文的文献

1
Emerging Applications of Nanotechnology in Healthcare Systems: Grand Challenges and Perspectives.
Pharmaceuticals (Basel). 2021 Jul 21;14(8):707. doi: 10.3390/ph14080707.
2
Application of Advanced Nanomaterials for Kidney Failure Treatment and Regeneration.
Materials (Basel). 2021 May 29;14(11):2939. doi: 10.3390/ma14112939.
3
Capillary electrophoresis of complex natural polysaccharides.
Electrophoresis. 2008 Aug;29(15):3095-106. doi: 10.1002/elps.200800109.
4
Immobilization of heparin: approaches and applications.
Curr Top Med Chem. 2008;8(2):80-100. doi: 10.2174/156802608783378891.
5
Flexible energy storage devices based on nanocomposite paper.
Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13574-7. doi: 10.1073/pnas.0706508104. Epub 2007 Aug 15.

本文引用的文献

1
In vitro evidence of gender-related heparin resistance.
Int J Obstet Anesth. 2004 Apr;13(2):91-4. doi: 10.1016/j.ijoa.2003.10.009.
2
Designing materials for biology and medicine.
Nature. 2004 Apr 1;428(6982):487-92. doi: 10.1038/nature02388.
3
Hemocompatibility of polyacrylonitrile dialysis membrane immobilized with chitosan and heparin conjugate.
Biomaterials. 2004 May;25(10):1947-57. doi: 10.1016/j.biomaterials.2003.08.027.
4
Covalently-bound heparin makes collagen thromboresistant.
Arterioscler Thromb Vasc Biol. 2004 Mar;24(3):613-7. doi: 10.1161/01.ATV.0000116026.18945.66. Epub 2004 Jan 5.
5
A modified uronic acid carbazole reaction.
Anal Biochem. 1962 Oct;4:330-4. doi: 10.1016/0003-2697(62)90095-7.
6
New insights in dialysis membrane biocompatibility: relevance of adsorption properties and heparin binding.
Nephrol Dial Transplant. 2003 Feb;18(2):252-7. doi: 10.1093/ndt/18.2.252.
7
Alternative methods of anticoagulation for dialysis-dependent patients with heparin-induced thrombocytopenia.
Semin Dial. 2003 Jan-Feb;16(1):61-7. doi: 10.1046/j.1525-139x.2003.03014.x.
9
Catalytic reactions in ionic liquids.
Chem Commun (Camb). 2001 Dec 7(23):2399-407. doi: 10.1039/b107270f.
10
Dissolution of cellulose [correction of cellose] with ionic liquids.
J Am Chem Soc. 2002 May 8;124(18):4974-5. doi: 10.1021/ja025790m.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验