Suppr超能文献

利用蛋白质微阵列揭示小鼠PDZ结构域的定量蛋白质相互作用网络。

Uncovering quantitative protein interaction networks for mouse PDZ domains using protein microarrays.

作者信息

Stiffler Michael A, Grantcharova Viara P, Sevecka Mark, MacBeath Gavin

机构信息

Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA.

出版信息

J Am Chem Soc. 2006 May 3;128(17):5913-22. doi: 10.1021/ja060943h.

Abstract

One of the principal challenges in systems biology is to uncover the networks of protein-protein interactions that underlie most biological processes. To date, experimental efforts directed at this problem have largely produced only qualitative networks that are replete with false positives and false negatives. Here, we describe a domain-centered approach--compatible with genome-wide investigations--that enables us to measure the equilibrium dissociation constant (K(D)) of recombinant PDZ domains for fluorescently labeled peptides that represent physiologically relevant binding partners. Using a pilot set of 22 PDZ domains, 4 PDZ domain clusters, and 20 peptides, we define a gold standard dataset by determining the K(D) for all 520 PDZ-peptide combinations using fluorescence polarization. We then show that microarrays of PDZ domains identify interactions of moderate to high affinity (K(D) < or = 10 microM) in a high-throughput format with a false positive rate of 14% and a false negative rate of 14%. By combining the throughput of protein microarrays with the fidelity of fluorescence polarization, our domain/peptide-based strategy yields a quantitative network that faithfully recapitulates 85% of previously reported interactions and uncovers new biophysical interactions, many of which occur between proteins that are co-expressed. From a broader perspective, the selectivity data produced by this effort reveal a strong concordance between protein sequence and protein function, supporting a model in which interaction networks evolve through small steps that do not involve dramatic rewiring of the network.

摘要

系统生物学的主要挑战之一是揭示构成大多数生物过程基础的蛋白质-蛋白质相互作用网络。迄今为止,针对这一问题的实验工作大多仅产生了充斥着假阳性和假阴性的定性网络。在此,我们描述了一种以结构域为中心的方法——与全基因组研究兼容——该方法使我们能够测量重组PDZ结构域与代表生理相关结合伴侣的荧光标记肽的平衡解离常数(K(D))。使用包含22个PDZ结构域、4个PDZ结构域簇和20个肽的试验集,我们通过使用荧光偏振测定所有520种PDZ-肽组合的K(D)来定义一个金标准数据集。然后我们表明,PDZ结构域微阵列以高通量形式识别中等至高亲和力(K(D)≤10 microM)的相互作用,假阳性率为14%,假阴性率为14%。通过将蛋白质微阵列的通量与荧光偏振的保真度相结合,我们基于结构域/肽的策略产生了一个定量网络,该网络忠实地概括了85%先前报道的相互作用,并揭示了新的生物物理相互作用,其中许多发生在共表达的蛋白质之间。从更广泛的角度来看,这项工作产生的选择性数据揭示了蛋白质序列与蛋白质功能之间的高度一致性,支持了一种模型,即相互作用网络通过不涉及网络剧烈重排的小步骤进化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b582/2533859/41514c279830/nihms61026f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验