Suppr超能文献

Sodium-dependent methyl 1-thio-beta-D-galactopyranoside transport in membrane vesicles isolated from Salmonella typhimurium.

作者信息

Tokuda H, Kaback H R

出版信息

Biochemistry. 1977 May 17;16(10):2130-6. doi: 10.1021/bi00629a013.

Abstract

Membrane vesicles isolated from Salmonella typhimurium G-30 grown in the presence of melibiose catalyze methyl 1-thio-beta-D-galactopyranoside (TMG) transport in the presence of sodium or lithium, as shown initially with intact cells by Stock and Roseman (Stock, J., and Roseman, S. (1971), Biochem. Biophys. Res. Commun. 44, 132). TMG-dependent sodium uptake is also observed, but only when a potassium diffusion potential (interior negative) is induced across the vesicle membrane. Cation-dependent TMG accumulation varies with the electrochemical gradient of protons generated as a result of D-lactate oxidation, and the vesicles catalyze D-lactate-dependent sodium efflux in a manner which is consistent with the operation of a proton-sodium exchange mechanism. Although the stoichiometry between sodium and TMG appears to be 1:1 when transport is induced by a potassium diffusion potential, evidence is presented which indicates that the relationship may exceed unity under certain conditions. The results are explained in terms of a model in which TMG-sodium (lithium) symport is driven by an electrochemical gradient of protons which functions to maintain a low intravesicular sodium or lithium concentration through proton--sodium (lithium) antiport.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验