Suppr超能文献

通过埃瓦尔德求和实现快速经验性pKa预测。

Fast empirical pKa prediction by Ewald summation.

作者信息

Krieger Elmar, Nielsen Jens E, Spronk Chris A E M, Vriend Gert

机构信息

Center for Molecular and Biomolecular Informatics, Radboud University Nijmegen, Toernooiveld 1, 6525ED Nijmegen, The Netherlands.

出版信息

J Mol Graph Model. 2006 Dec;25(4):481-6. doi: 10.1016/j.jmgm.2006.02.009. Epub 2006 Apr 27.

Abstract

pK(a) calculations for macromolecules are normally performed by solving the Poisson-Boltzmann equation, accounting for the different dielectric constants of solvent and solute, as well as the ionic strength. Despite the large number of successful applications, there are some situations where the current algorithms are not suitable: (1) large scale, high-throughput analysis which requires calculations to be completed within a fraction of a second, e.g. when permanently monitoring pK(a) shifts during a molecular dynamics simulation; (2) prediction of pK(a)s in periodic boundaries, e.g. when reconstructing entire protein crystal unit cells from PDB files, including the correct protonation patterns at experimental pH. Such in silico crystals are needed by 'self-parameterizing' molecular dynamics force fields like YASARA YAMBER, that optimize their parameters while energy-minimizing high-resolution protein crystals. To address both problems, we define an empirical equation that expresses the pK(a) as a function of electrostatic potential, hydrogen bonds and accessible surface area. The electrostatic potential is evaluated by Ewald summation, which captures periodic crystal environments and the uncertainty in atom positions using Gaussian charge densities. The empirical proportionality constants are derived from 217 experimentally determined pK(a)s, and despite its simplicity, this pK(a) calculation method reaches a high overall jack-knifed accuracy, and is fast enough to be used during a molecular dynamics simulation. A reliable null-model to judge pK(a) prediction accuracies is also presented.

摘要

大分子的pK(a)计算通常通过求解泊松-玻尔兹曼方程来进行,该方程考虑了溶剂和溶质的不同介电常数以及离子强度。尽管有大量成功的应用,但在某些情况下,当前的算法并不适用:(1)大规模、高通量分析,这需要在几分之一秒内完成计算,例如在分子动力学模拟中永久监测pK(a)的变化时;(2)预测周期性边界中的pK(a),例如从PDB文件重建整个蛋白质晶体单位晶胞时,包括在实验pH下正确的质子化模式。像YASARA YAMBER这样的“自参数化”分子动力学力场需要这种计算机模拟晶体,它们在对高分辨率蛋白质晶体进行能量最小化时优化其参数。为了解决这两个问题,我们定义了一个经验方程,将pK(a)表示为静电势、氢键和可及表面积的函数。静电势通过埃瓦尔德求和来评估,它使用高斯电荷密度捕捉周期性晶体环境和原子位置的不确定性。经验比例常数来自217个实验测定的pK(a),尽管该pK(a)计算方法很简单,但总体交叉验证精度很高,并且足够快,可以在分子动力学模拟中使用。还提出了一个用于判断pK(a)预测准确性的可靠零模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验