文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于涡虫的计算物理化学性质和实验表型分析来区分神经活性药物类别。

Distinguishing classes of neuroactive drugs based on computational physicochemical properties and experimental phenotypic profiling in planarians.

作者信息

Ireland Danielle, Rabeler Christina, Rao Sagar, Richardson Rudy J, Collins Eva-Maria S

机构信息

Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America.

Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, United States of America.

出版信息

PLoS One. 2025 Jan 30;20(1):e0315394. doi: 10.1371/journal.pone.0315394. eCollection 2025.


DOI:10.1371/journal.pone.0315394
PMID:39883642
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11781733/
Abstract

Mental illnesses put a tremendous burden on afflicted individuals and society. Identification of novel drugs to treat such conditions is intrinsically challenging due to the complexity of neuropsychiatric diseases and the need for a systems-level understanding that goes beyond single molecule-target interactions. Thus far, drug discovery approaches focused on target-based in silico or in vitro high-throughput screening (HTS) have had limited success because they cannot capture pathway interactions or predict how a compound will affect the whole organism. Organismal behavioral testing is needed to fill the gap, but mammalian studies are too time-consuming and cost-prohibitive for the early stages of drug discovery. Behavioral medium-throughput screening (MTS) in small organisms promises to address this need and complement in silico and in vitro HTS to improve the discovery of novel neuroactive compounds. Here, we used cheminformatics and MTS in the freshwater planarian Dugesia japonica-an invertebrate system used for neurotoxicant testing-to evaluate the extent to which complementary insight could be gained from the two data streams. In this pilot study, our goal was to classify 19 neuroactive compounds into their functional categories: antipsychotics, anxiolytics, and antidepressants. Drug classification was performed with the same computational methods, using either physicochemical descriptors or planarian behavioral profiling. As it was not obvious a priori which classification method was most suited to this task, we compared the performance of four classification approaches. We used principal coordinate analysis or uniform manifold approximation and projection, each coupled with linear discriminant analysis, and two types of machine learning models-artificial neural net ensembles and support vector machines. Classification based on physicochemical properties had comparable accuracy to classification based on planarian profiling, especially with the machine learning models that all had accuracies of 90-100%. Planarian behavioral MTS correctly identified drugs with multiple therapeutic uses, thus yielding additional information compared to cheminformatics. Given that planarian behavioral MTS is an inexpensive true 3R (refine, reduce, replace) alternative to vertebrate testing and requires zero a priori knowledge about a chemical, it is a promising experimental system to complement in silico cheminformatics to identify new drug candidates.

摘要

精神疾病给患者个人和社会带来了巨大负担。由于神经精神疾病的复杂性以及需要超越单分子 - 靶点相互作用的系统层面理解,识别用于治疗此类疾病的新型药物本质上具有挑战性。到目前为止,专注于基于靶点的计算机模拟或体外高通量筛选(HTS)的药物发现方法取得的成功有限,因为它们无法捕捉通路相互作用,也无法预测化合物将如何影响整个生物体。需要进行生物体行为测试来填补这一空白,但哺乳动物研究对于药物发现的早期阶段来说耗时过长且成本过高。小型生物中的行为中通量筛选(MTS)有望满足这一需求,并补充计算机模拟和体外HTS,以改进新型神经活性化合物的发现。在这里,我们在淡水涡虫日本三角涡虫(一种用于神经毒物测试的无脊椎动物系统)中使用了化学信息学和MTS,以评估从这两个数据流中可以获得互补见解的程度。在这项初步研究中,我们的目标是将19种神经活性化合物分类为它们的功能类别:抗精神病药、抗焦虑药和抗抑郁药。使用相同的计算方法进行药物分类,使用物理化学描述符或涡虫行为谱分析。由于事先不清楚哪种分类方法最适合这项任务,我们比较了四种分类方法的性能。我们使用主坐标分析或均匀流形近似与投影,每种方法都与线性判别分析相结合,以及两种类型的机器学习模型——人工神经网络集成和支持向量机。基于物理化学性质的分类与基于涡虫谱分析的分类具有相当的准确性,特别是对于所有准确率都在90% - 100%的机器学习模型。涡虫行为MTS正确识别了具有多种治疗用途的药物,因此与化学信息学相比产生了额外的信息。鉴于涡虫行为MTS是一种廉价的真正替代脊椎动物测试的3R(优化、减少、替代)方法,并且不需要关于化学物质的先验知识,它是一个有前途的实验系统,可以补充计算机模拟化学信息学以识别新的候选药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f6/11781733/88e44d464b8b/pone.0315394.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f6/11781733/b723b89668d7/pone.0315394.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f6/11781733/4c88a466a213/pone.0315394.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f6/11781733/72bcba62c507/pone.0315394.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f6/11781733/0d33a74132b4/pone.0315394.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f6/11781733/80ddf5e0bedc/pone.0315394.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f6/11781733/ddc8fa2ace85/pone.0315394.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f6/11781733/c208e6cb5cf6/pone.0315394.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f6/11781733/dda7290cad6b/pone.0315394.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f6/11781733/bde6ff6af2ef/pone.0315394.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f6/11781733/a1466e68eb36/pone.0315394.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f6/11781733/b58e942b885c/pone.0315394.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f6/11781733/88e44d464b8b/pone.0315394.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f6/11781733/b723b89668d7/pone.0315394.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f6/11781733/4c88a466a213/pone.0315394.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f6/11781733/72bcba62c507/pone.0315394.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f6/11781733/0d33a74132b4/pone.0315394.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f6/11781733/80ddf5e0bedc/pone.0315394.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f6/11781733/ddc8fa2ace85/pone.0315394.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f6/11781733/c208e6cb5cf6/pone.0315394.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f6/11781733/dda7290cad6b/pone.0315394.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f6/11781733/bde6ff6af2ef/pone.0315394.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f6/11781733/a1466e68eb36/pone.0315394.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f6/11781733/b58e942b885c/pone.0315394.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f6/11781733/88e44d464b8b/pone.0315394.g012.jpg

相似文献

[1]
Distinguishing classes of neuroactive drugs based on computational physicochemical properties and experimental phenotypic profiling in planarians.

PLoS One. 2025-1-30

[2]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[3]
The Black Book of Psychotropic Dosing and Monitoring.

Psychopharmacol Bull. 2024-7-8

[4]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.

Health Technol Assess. 2001

[5]
Sexual Harassment and Prevention Training

2025-1

[6]
Home treatment for mental health problems: a systematic review.

Health Technol Assess. 2001

[7]
Antidepressants for pain management in adults with chronic pain: a network meta-analysis.

Health Technol Assess. 2024-10

[8]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[9]
The quantity, quality and findings of network meta-analyses evaluating the effectiveness of GLP-1 RAs for weight loss: a scoping review.

Health Technol Assess. 2025-6-25

[10]
Rapid molecular tests for tuberculosis and tuberculosis drug resistance: a qualitative evidence synthesis of recipient and provider views.

Cochrane Database Syst Rev. 2022-4-26

本文引用的文献

[1]
How neurobehavior and brain development in alternative whole-organism models can contribute to prediction of developmental neurotoxicity.

Neurotoxicology. 2024-5

[2]
YASARA Model-Interactive Molecular Modeling from Two Dimensions to Virtual Realities.

J Chem Inf Model. 2023-10-23

[3]
Comparative toxicity assessment of glyphosate and two commercial formulations in the planarian .

Front Toxicol. 2023-6-26

[4]
Predicting compound activity from phenotypic profiles and chemical structures.

Nat Commun. 2023-4-8

[5]
The splanchnic mesenchyme is the tissue of origin for pancreatic fibroblasts during homeostasis and tumorigenesis.

Nat Commun. 2023-1-3

[6]
New Worm on the Block: Planarians in (Neuro)Toxicology.

Curr Protoc. 2022-12

[7]
Adult and regenerating planarians respond differentially to chronic drug exposure.

Neurotoxicol Teratol. 2023

[8]
Burning down the house: reinventing drug discovery in psychiatry for the development of targeted therapies.

Mol Psychiatry. 2023-1

[9]
Differences in neurotoxic outcomes of organophosphorus pesticides revealed multi-dimensional screening in adult and regenerating planarians.

Front Toxicol. 2022-10-4

[10]
Detecting Drug-Target Interactions with Feature Similarity Fusion and Molecular Graphs.

Biology (Basel). 2022-6-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索