Thorsson Vesteinn, Hörnquist Michael, Siegel Andrew F, Hood Leroy
Institute for Systems Biology.
Stat Appl Genet Mol Biol. 2005;4:Article28. doi: 10.2202/1544-6115.1118. Epub 2005 Sep 27.
We examine the application of statistical model selection methods to reverse-engineering the control of galactose utilization in yeast from DNA microarray experiment data. In these experiments, relationships among gene expression values are revealed through modifications of galactose sugar level and genetic perturbations through knockouts. For each gene variable, we select predictors using a variety of methods, taking into account the variance in each measurement. These methods include maximization of log-likelihood with Cp, AIC, and BIC penalties, bootstrap and cross-validation error estimation, and coefficient shrinkage via the Lasso.
我们研究了统计模型选择方法在从DNA微阵列实验数据反向工程酵母半乳糖利用控制方面的应用。在这些实验中,通过改变半乳糖水平以及通过基因敲除进行遗传扰动,揭示了基因表达值之间的关系。对于每个基因变量,我们考虑每次测量中的方差,使用多种方法选择预测变量。这些方法包括带有Cp、AIC和BIC惩罚的对数似然最大化、自助法和交叉验证误差估计,以及通过套索法进行系数收缩。